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Riemann-roincare
uniformization theorem

Let X be a complex projective manifold:

If dim X := n = 1 then there exits an hermitiam metric
on 1'X with constant curvature k such that

k>0 k=0 k<0
X =5%2=pP! X=C/I' X=A/m(X)

And 1n higher dimension ?
How can we generalize the first class?
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Positivity of the tangent bundle

Different definitions of positivity:

m ['X 1s ample

(any definition)

m & — TX is ample
(€ locally free of rank r)

w3f:P! - X e f*T'X is ample
~ X rationally connected
(.e. Vz,y € X,3f : P! — X through z, v)
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Positivity of the tangent bundle

Different definitions of positivity:

m ['X 1s ample

(any definition)

m & — TX is ample

(€ locally free of rank r)

w3f:P! - X e f*T'X is ample
~ X rationally connected
(ie. Vo,y € X,3f : P! — X through z, v)
m 1'X 1s not generically seminegative
i.e. 3 — TX and {C;} a family of curves
such that ¢1 (£)Ct > 0 and {C; } covers X

~3f : P! - X and f*TX is nef.
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tors and their relationships

X ample <= X = P"[Mori79]

TX ample <= X = P"[An — Wis01] X is Fano that is
—Kx = detT X is ample

Kollar-Miyaoka-Mori 92

rationally connected Mori 82

Miyaoka 87
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the actors and their relationships

T'X ample <= X = P"[Mori79]

E — TX ample <= X = P"[An — Wis01] X is Fano that is
—Kx = detT X is ample

Kollar-Miyaoka-Mori 92

X rationally connected Mori 82

Miyaoka 87

T' X not generically seminegative € uniruled

Minimal Model Program

X ~ fibrazione in varieta di Fano
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Rational curves

On uniruled varieties we have families of rational curves,
1.e. irreducible components

VV C Ratcurves™(X) := Hom}. (P!, X)/Aut(P')
(V2 1s the subfamily of the curves passing through x).
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On uniruled varieties we have families of rational curves,
1.e. irreducible components

VV C Ratcurves™(X) := Hom}. (P!, X)/Aut(P')
(V2 18 the subfamily of the curves passing through z).

Deformation theory+Rieman-Roch give a bound to the
dimension from below.
It works very well for Fano manifolds:

dimV > —KX'C + (TL — 3),
dszx > —KX'C — 2
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= minimal with respect to the intersection with — K x
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= minimal with respect to the intersection with — K x

m unsplit if V' 1s proper.
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Special rational curves

Families which are minimal or almost lines:

= minimal with respect to the intersection with — K x
m unsplit if V' 1s proper.
m locally unsplit if V. 1s proper.

m generically unsplit if through two generic points
passe only a finite number of curves in the family.
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Special rational curves

Families which are minimal or almost lines:

= minimal with respect to the intersection with — K x
m unsplit if V' 1s proper.
m locally unsplit if V. 1s proper.

m generically unsplit if through two generic points
passe only a finite number of curves in the family.

» (minimal =-unsplit = locally unsplit=- gen.
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Special rational curves

Families which are minimal or almost lines:

= minimal with respect to the intersection with — K x
m unsplit if V' 1s proper.
m locally unsplit if V. 1s proper.

m generically unsplit if through two generic points
passe only a finite number of curves in the family.

» (minimal =-unsplit = locally unsplit=- gen.
unsplit).

If V' 1s gen unsplit then:
dimLocus(V,) =dimV, +1> —Kx C — 1.

Recent results on Fano manifolds — p.8/21



Mori bend and break

Theorem-Mori bend and break A uniruled manifold 1s
covered by a family V' of rational curves such that

(1) V' 1s generically unsplit and

(ideg g,V < (n+1).
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Mori bend and break

Theorem-Mori bend and break A uniruled manifold 1s
covered by a family V' of rational curves such that

(1) V' 1s generically unsplit and

(ideg g,V < (n+1).
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An observation of Wisniewski

Proposition Let V' be an unsplit family. Then
p(Locus(V;)) = 1.
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An observation of Wisniewski

Proposition Let V' be an unsplit family. Then
p(Locus(V;)) = 1.

Proposition Let V' be an unsplit family and ¥ C X a
closed subset such that every curve 1n Y 1s independent
from curves in V. Then

dimLocus(V)y > dimY + deg_ i,V — 1.
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Rationally connected fibrations.

Let x,y € X and define :
x ~ y iff 4 a chain of rational curves through x and y.

x ~yey y 1ff 3 a chain of rational curves € V' through x
and v.
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Rationally connected fibrations.

Let x,y € X and define :

x ~ y iff 4 a chain of rational curves through x and y.
x ~ey y 1ff 3 a chain of rational curves € V' through x
and v.

Theorem- Campana and Kollar-Miyaoka-Mor1 (1992)

The exists an open set X C X and amap ¢” : X! — ZY
which is proper, with connected fiber and whose fibers
are equivalence classes for the equivalence relation ~
(therefore they are rationally connected).

If V' 1s unsplit the same 1s true for ~,..;y (and the fibers
are rationally connected with respect to V).
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A conjecture of Mukai

Let X be a Fano manifold. We define the index and the pseudoindex:
rx = max{m € N | — Kx = mL for some divisorL},

ix = min{m € N| — Kx - C =m,C C X rational curve }.
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A conjecture of Mukai

Let X be a Fano manifold. We define the index and the pseudoindex:
rx = max{m € N | — Kx = mL for some divisorL},
ix = min{m € N| — Kx - C =m,C C X rational curve }.
Note that i x = mryx. Let also px = dimN{(X).

Conjecture of Mukai (1988):

pX(T'X — 1) S 1.
later generalized
ox(ix —1) <n with = iff X ~ (Px~1)rx,
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Steps toward the conjecture

-(1990) Wisniewskai:
Ifix > "= then px = 1.

-(2002) Bonavero, Casagrande, Debarre e Druel:
G.C. holds if (a) n = 4,

(b) X 1s toric and ¢ x > ”}f?’ orn <T7.
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Steps toward the conjecture

-(1990) Wisniewskai:
If ix > ™2 then px = 1.

-(2002) Bonavero, Casagrande, Debarre e Druel:
G.C. holds if (a) n = 4,

(b) X 1s toric and ¢ x > ”;3 orn <T7.

-(2003) Andreatta,Chierici,Occhetta:
G.C. holds 1if (a) n = 5,

(b)if1x > ”gS and there exists a family of rational

curves V' which 1s unsplit and covers X.
This 1s the case if X has a fiber type contraction or it
does not have small contractions.
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A naive proof of the conjecture

Proposition [W1] Let V' be an unsplit family and ¥ C X
a closed subset such that every curve in Y 1s independent
from curves in V. Then

dimLocus(V)y > dimY + deg_ g,V — 1.
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A naive proof of the conjecture

Proposition [W1] Let V' be an unsplit family and ¥ C X
a closed subset such that every curve in Y 1s independent
from curves in V. Then

dimLocus(V)y > dimY + deg_ g,V — 1.

Claim. If there exist Vi, ..., V, unsplit families of r.c.
whose classes are lineraly independent in N;(X) and

such that Locus(V1, ..., V,), # 0 then the conjecture
holds.
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A naive proof of the conjecture

Proposition [W1] Let V' be an unsplit family and ¥ C X
a closed subset such that every curve in Y 1s independent
from curves in V. Then

dimLocus(V)y > dimY + deg_ g,V — 1.

Claim. If there exist Vi, ..., V, unsplit families of r.c.
whose classes are lineraly independent in N;(X) and

such that Locus(V1, ..., V,), # 0 then the conjecture
holds.

It 1s enough to apply inductively the proposition:
n > dimLocus(Vi,...,V,)s > X;(degV;—1) > p(ix—1).
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Proofl of part of the conjecture

Teorema (WiSniewski 90)

Itexy > "T*Q and px > 1 then there exist two families

141, V5 as in the claim.
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Proof of part of the conjecture

Teorema (WiSniewski 90)
Ifix > ”T*Q and pxy > 1 then there exist two families

V4, V5 as in the claim.
Let V5 be a family which covers X with

deg i, V1 < (n+ 1) (Mori bend and break).
Then, by assumption, V; € unsplit.
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Proof of part of the conjecture

Teorema (WiSniewski 90)
Ifix > ”T*Q and pxy > 1 then there exist two families

Vi, V5 as in the claim.
Let V7 be a family which covers X with
deg i, V1 < (n+ 1) (Mori bend and break).

Then, by assumption, V; € unsplit.

Since px > 1 there must be another family whose curves
are independent (cone theorem).
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Proof of part of the conjecture

Teorema (WiSniewski 90)

Ifix > ”T*Q and pxy > 1 then there exist two families

141, V5 as in the claim.

Let V7 be a family which covers X with
deg i, V1 < (n+ 1) (Mori bend and break).
Then, by assumption, V; € unsplit.

Since px > 1 there must be another family whose curves
are independent (cone theorem).

For other steps one has to put three or more families “’in

29

row ...
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Classification (with high rx or 7 x).

X Fano manifold
X singular: M. Reid and his school.

rx >n+1 P" Kobayashi-Ochiai (70)
1x > n+ 1 P" Cho-Miyaoka-Sh.Barr.(01)
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Classification (with high rx or i x).

X Fano manifold
X singular: M. Reid and his school.

rx >n+1 P" Kobayashi-Ochiai (70)
1x > n+ 1 P" Cho-Miyaoka-Sh.Barr.(01)

ry = n Q™ Kobayashi-Ochiai (70)
ix =n,p=1 Q" Miyaoka ?
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Classification (with high rx or i x).

X Fano manifold
X singular: M. Reid and his school.

rx >n+1 P" Kobayashi-Ochiai (70)
1x > n+ 1 P" Cho-Miyaoka-Sh.Barr.(01)

ry = n Q™ Kobayashi-Ochiai (70)
ix =n,p=1 Q" Miyaoka ?
rx =n — 1 del- Pezzo Fujita (90)

rxy =n — 2 Mukai Fano, Isk., Mori, Mukai, ....
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Proof of a classification for high r y

There are three main steps:

Try to hunt an elephant= element of the anticanonical
system 1.e. a smooth section ) € L where —Kx = rxL.
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Proof of a classification for high r y

There are three main steps:

Try to hunt an elephant= element of the anticanonical
system 1.e. a smooth section D € L where —Kx = rxL.

Theorem
If rx > (n — 1) then an elephant exists (Fuijta 90).
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Proof of a classification for high r y

There are three main steps:

Try to hunt an elephant= element of the anticanonical
system 1.e. a smooth section D € L where —Kx = rxL.

Theorem
If rx > (n — 1) then an elephant exists (Fuijta 90).

If rx = (n — 1) then an elephant exists (Mella 99).
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Jimension....

1:
ethat —Kp = (r — 1)Lp,
D 1s a Fano manifold with
—n—landrp =ryxy — 1.



Observe that —Kp = (r — 1) Lp,
that 1s D 1s a Fano manifold with
dimD =n—1landrp =rxy — 1.

S0 one can go down to the case r = 1;
1f ry = n — 1 we land 1nto the set of del Pezzo surfaces,
if ry = n — 2 we land 1nto the set of Fano 3-folds.

Now we have to produce examples and see that they are
all: this 1s the more “creative” part.
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Observe that —Kp = (r — 1) Lp,
that 1s D 1s a Fano manifold with
dimD =n—1landrp =rxy — 1.

S0 one can go down to the case r = 1;
1f ry = n — 1 we land 1nto the set of del Pezzo surfaces,
if ry = n — 2 we land 1nto the set of Fano 3-folds.

Now we have to produce examples and see that they are
all: this 1s the more “creative” part.

The last discovered Fano 3-fold (Mori-Mukai 2003):
Blo (P! x P! x P1), C curve of three — degree (1,1, 3)
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Adjunction

Time to "ascend”. The adjunction theory studies, in more
generality, the following problem:

given / C X, Z € |L| ample divisor, describe X.
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Adjunction

Time to "ascend”. The adjunction theory studies, in more
generality, the following problem:

given / C X, Z € |L| ample divisor, describe X.

For instance if Z 1s Fanoand — K, =r,H~,

:>—KX:—K2—|—L:T2(H2)—I—L.

. 1n this generality /1, need not to be ample on
X (in particular X may be not Fano).
We have to compare the Kletman-Mor1 cones

NE(Z) and NE(X).
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Adjunction

Time to "ascend”. The adjunction theory studies, in more
generality, the following problem:

given / C X, Z € |L| ample divisor, describe X.

For instance if Z 1s Fanoand — K, =r,H~,

:>—KX:—K2—|—L:T2(H2)—I—L.

. 1n this generality /1, need not to be ample on
X (in particular X may be not Fano).
We have to compare the Kletman-Mor1 cones
NE(Z)and NE(X).
This 1s not a problem if we start by X.

Recent results on Fano manifolds — p.19/21



ACH 1ic wilicil COnce you nave aina 11
tell who you are

Theorem Andreatta-Novelli-Occhetta (2003).

If ry; > dimZ/2 > 2 then

X is Fanoand NE(Z) = NE(X),

except if Z = P! x V, with V' = IP? a del Pezzo 3-fold
(and 3 X — P! with fiber P* or a del Pezzo 4-fold).
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Theorem Andreatta-Novelli-Occhetta (2003).

If ry; > dimZ/2 > 2 then

X is Fanoand NE(Z) = NE(X),

except if Z = P! x V, with V' = IP? a del Pezzo 3-fold
(and 3 X — P! with fiber P* or a del Pezzo 4-fold).

Corollary We can classify all X whose ample section 1s a
Fano manifold of index > (n — 2) > 3.
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ACH C WiICIl COIC YOoUu 1ave aind 111
tell who you are

Theorem Andreatta-Novelli-Occhetta (2003).

If ry; > dimZ/2 > 2 then

X is Fanoand NE(Z) = NE(X),

except if Z = P! x V, with V' = IP? a del Pezzo 3-fold
(and 3 X — P! with fiber P* or a del Pezzo 4-fold).

Corollary We can classify all X whose ample section 1s a
Fano manifold of index > (n — 2) > 3.

Remark:

1) if L 1s very ample the theorem 1s by Beltrametti-Fania-Sommese

2) The last discvered Fano 3-fold does not ascend
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.and if the pseudoindex is high?

Theorem Chierici-Occhetta (2004).
Let X be a Fano manifold with 7y = dimX — 3,

dimX > 4 (and px > 2). The cones N E(X) are listed
for all possible X.

In particular N (X)) is generated by px rays.
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.and if the pseudoindex is high?

Theorem Chierici-Occhetta (2004).
Let X be a Fano manifold with 7y = dimX — 3,

dimX > 4 (and px > 2). The cones N E(X) are listed
for all possible X.

In particular N (X)) is generated by px rays.

Moreover X has always an elementary fiber type
contraction except when:

X is the blow up of P° along one of the following

surfaces: a smooth quadric, a cubic scroll in P4 a
Veronese surface.

Recent results on Fano manifolds — p.21/21
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