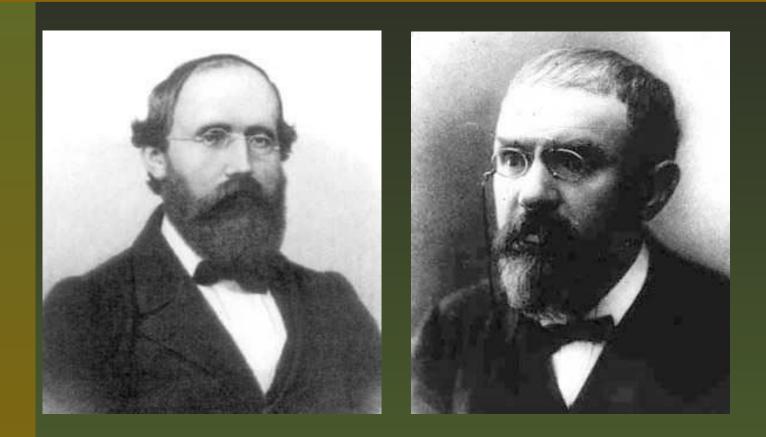
Recent results on Fano manifolds

Marco Andreatta

Dipartimento di Matematica Trento

Recent results on Fano manifolds - p.1/21

Riemann-Poincaré uniformization theorem



Riemann-Poincaré uniformization theorem

Let X be a complex projective manifold:

If $\dim X := n = 1$ then there exits an hermitiam metric on TX with constant curvature k such that k > 0 k = 0 k < 0 $X = S^2 = \mathbb{P}^1$ $X = \mathbb{C}/\Gamma$ $X = \Delta/\pi_1(X)$

And in higher dimension ? How can we generalize the first class?

Different definitions of positivity:

$\blacksquare TX$ is ample

(any definition)

Different definitions of positivity:

$\blacksquare TX$ is ample

(any definition)

$\mathbf{\mathcal{E}} \hookrightarrow TX$ is ample

(\mathcal{E} locally free of rank r)

Different definitions of positivity:

$\blacksquare TX$ is ample

(any definition)

 $\mathbf{\mathcal{E}} \hookrightarrow TX \text{ is ample}$

(\mathcal{E} locally free of rank r)

 $\exists f : \mathbb{P}^1 \to X \text{ e } f^*TX \text{ is ample} \\ \sim X \text{ rationally connected} \\ \text{(i.e. } \forall x, y \in X, \exists f : \mathbb{P}^1 \to X \text{ through } x, y) \end{cases}$

Different definitions of positivity:

$\blacksquare TX$ is ample

(any definition)

- $\mathbf{\mathcal{E}} \hookrightarrow TX$ is ample
 - (\mathcal{E} locally free of rank r)
- $\exists f : \mathbb{P}^1 \to X \text{ e } f^*TX \text{ is ample} \\ \sim X \text{ rationally connected}$

(i.e. $\forall x, y \in X, \exists f : \mathbb{P}^1 \to X \text{ through } x, y)$

• TX is not generically seminegative i.e. $\exists \mathcal{E} \hookrightarrow TX$ and $\{C_t\}$ a family of curves such that $c_1(\mathcal{E})C_t > 0$ and $\{C_t\}$ covers X $\sim \exists f : \mathbb{P}^1 \to X$ and f^*TX is nef.

TX ample $\iff X = \mathbb{P}^n[Mori79]$

TX ample $\iff X = \mathbb{P}^n[Mori79]$

 $\mathcal{E} \hookrightarrow TX \text{ ample} \iff X = \mathbb{P}^n[An - Wis01]$

TX ample $\iff X = \mathbb{P}^n[Mori79]$

 $\mathcal{E} \hookrightarrow TX \text{ ample} \iff X = \mathbb{P}^n[An - Wis01]$

X is Fano that is $-K_X = detTX$ is ample

TX ample $\iff X = \mathbb{P}^n[Mori79]$

 $\mathcal{E} \hookrightarrow TX \text{ ample} \iff X = \mathbb{P}^n[An - Wis01]$

X is Fano that is $-K_X = detTX$ is ample

Xrationally connected

TX not generically seminegative

TX ample $\iff X = \mathbb{P}^n[Mori79]$

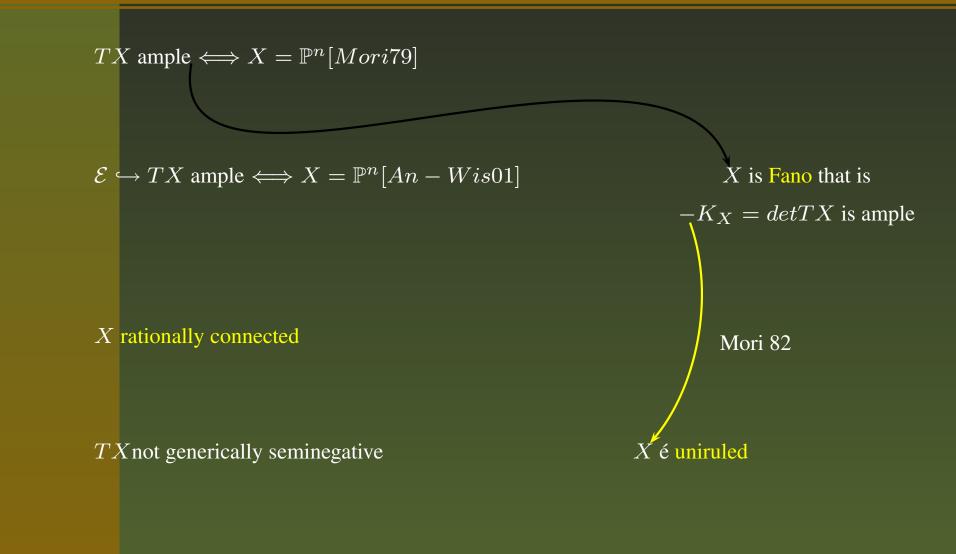
 $\mathcal{E} \hookrightarrow TX \text{ ample} \iff X = \mathbb{P}^n[An - Wis01]$

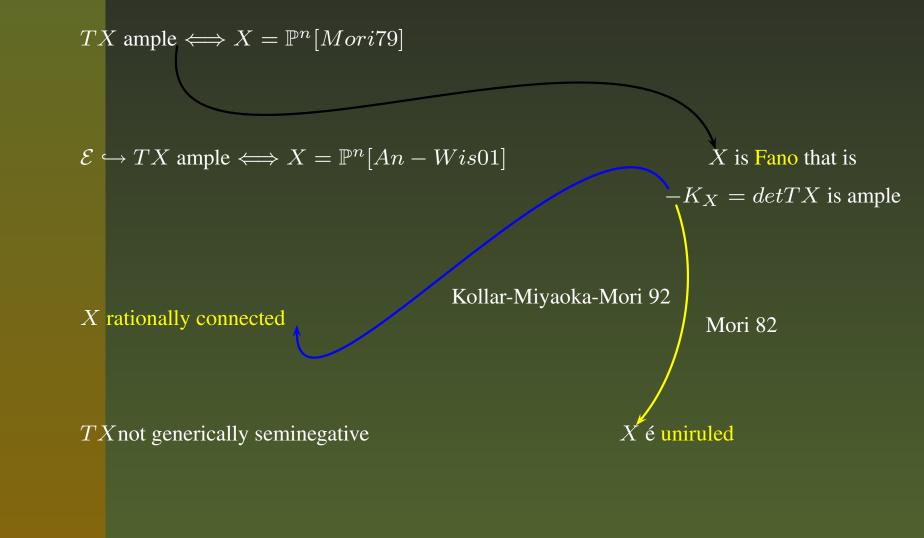
X is Fano that is $-K_X = detTX$ is ample

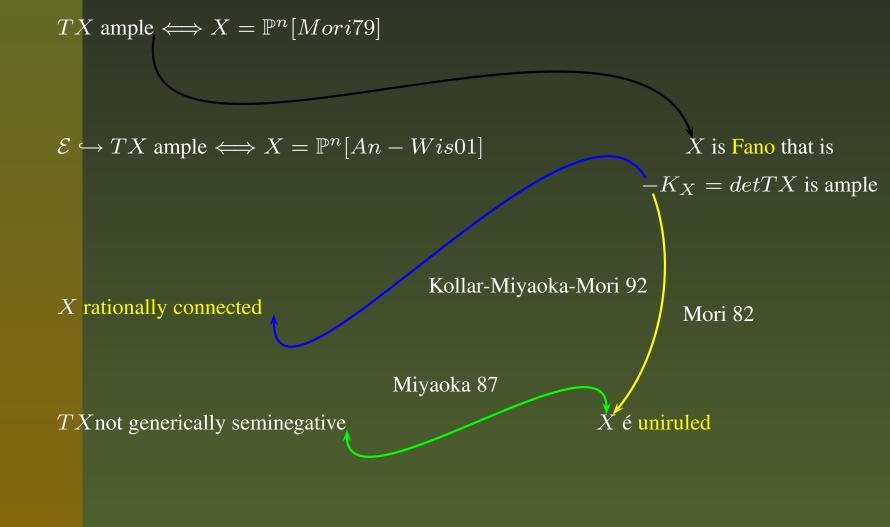
X rationally connected

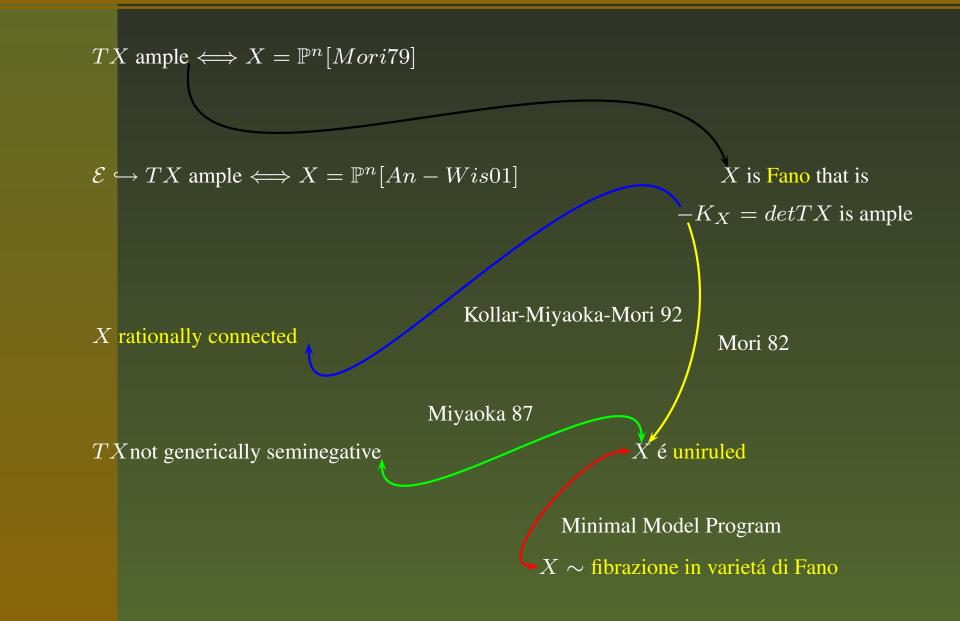
TX not generically seminegative

X é uniruled

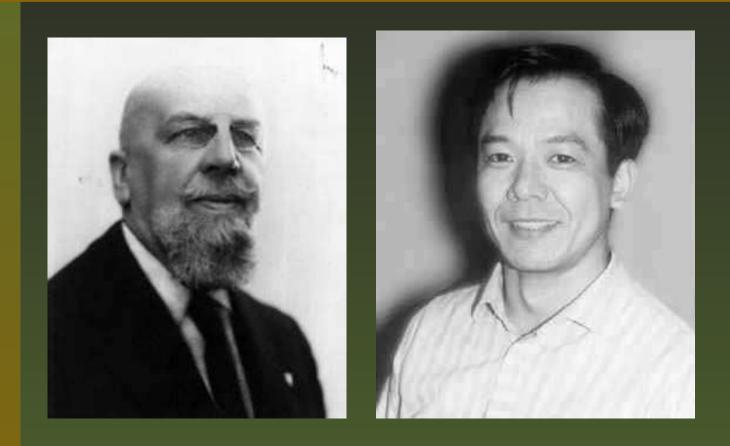








I Maestri



On uniruled varieties we have families of rational curves, i.e. irreducible components

 $V \subset \operatorname{Ratcurves}^n(X) := \operatorname{Hom}^n_{bir}(\mathbb{P}^1, X) / \operatorname{Aut}(\mathbb{P}^1)$

 $(V_x \text{ is the subfamily of the curves passing through } x).$

On uniruled varieties we have families of rational curves, i.e. irreducible components

 $V \subset \operatorname{Ratcurves}^{n}(X) := \operatorname{Hom}_{bir}^{n}(\mathbb{P}^{1}, X) / \operatorname{Aut}(\mathbb{P}^{1})$ (V_{x} is the subfamily of the curves passing through x).

Deformation theory+Rieman-Roch give a bound to the dimension from below. It works very well for Fano manifolds:

$$dimV \ge -K_X \cdot C + (n-3),$$
$$dimV_r \ge -K_X \cdot C - 2$$

Special rational curves

Families which are minimal or almost lines:

 \blacksquare minimal with respect to the intersection with $-K_X$

Special rational curves

Families which are minimal or almost lines:

minimal with respect to the intersection with $-K_X$ unsplit if V is proper.

Special rational curves

Families which are minimal or almost lines:

minimal with respect to the intersection with -K_X
unsplit if V is proper.
locally unsplit if V_x is proper.

Families which are minimal or almost lines:

- **minimal** with respect to the intersection with $-K_X$
- unsplit if V is proper.
- locally unsplit if V_x is proper.
- generically unsplit if through two generic points passe only a finite number of curves in the family.

Families which are minimal or almost lines:

- **minimal** with respect to the intersection with $-K_X$
- unsplit if V is proper.
- locally unsplit if V_x is proper.
- generically unsplit if through two generic points passe only a finite number of curves in the family.
- (minimal \Rightarrow unsplit \Rightarrow locally unsplit \Rightarrow gen. unsplit).

Families which are minimal or almost lines:

- **–** minimal with respect to the intersection with $-K_X$
- unsplit if V is proper.
- locally unsplit if V_x is proper.
- generically unsplit if through two generic points passe only a finite number of curves in the family.
- (minimal \Rightarrow unsplit \Rightarrow locally unsplit \Rightarrow gen. unsplit).

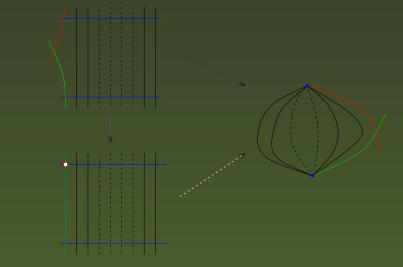
Remark. If V is gen unsplit then:

 $dimLocus(V_x) = dimV_x + 1 \ge -K_X C - 1.$

Theorem-Mori bend and break A uniruled manifold is covered by a family V of rational curves such that (i) V is generically unsplit and (ii) $deg_{-K_X}V \leq (n+1)$.

Mori bend and break

Theorem-Mori bend and break A uniruled manifold is covered by a family V of rational curves such that (i) V is generically unsplit and (ii) $deg_{-K_X}V \le (n+1)$.

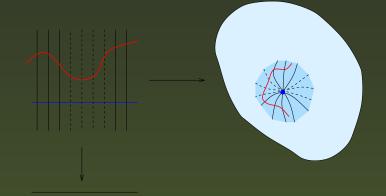


An observation of Wisniewski

Proposition Let V be an unsplit family. Then $\rho(Locus(V_x)) = 1.$

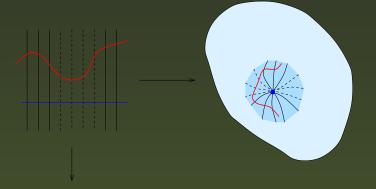
An observation of Wisniewski

Proposition Let V be an unsplit family. Then $\rho(Locus(V_x)) = 1.$



An observation of Wisniewski

Proposition Let V be an unsplit family. Then $\rho(Locus(V_x)) = 1.$



Proposition Let V be an unsplit family and $Y \subset X$ a closed subset such that every curve in Y is independent from curves in V. Then

 $dimLocus(V)_Y \ge dimY + deg_{-K_X}V - 1.$

Rationally connected fibrations.

Let $x, y \in X$ and define : $x \sim y$ iff \exists a chain of rational curves through x and y. $x \sim_{rcV} y$ iff \exists a chain of rational curves $\in V$ through xand y.

Rationally connected fibrations.

Let $x, y \in X$ and define : $x \sim y$ iff \exists a chain of rational curves through x and y. $x \sim_{rcV} y$ iff \exists a chain of rational curves $\in V$ through xand y.

Theorem- Campana and Kollár-Miyaoka-Mori (1992) The exists an open set $X^0 \subset X$ and a map $\varphi^0 : X^0 \to Z^0$ which is proper, with connected fiber and whose fibers are equivalence classes for the equivalence relation ~ (therefore they are rationally connected). If V is unsplit the same is true for \sim_{rcV} (and the fibers are rationally connected with respect to V).

Let X be a Fano manifold. We define the *index* and the *pseudoindex*:

Let X be a Fano manifold. We define the *index* and the *pseudoindex*:

 $r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \text{ for some divisor}L\},\$

 $i_X = \min\{m \in \mathbb{N} \mid -K_X \cdot C = m, C \subset X \text{ rational curve } \}.$

Let X be a Fano manifold. We define the *index* and the *pseudoindex*:

 $r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \text{ for some divisor}L\},\$

 $i_X = \min\{m \in \mathbb{N} \mid -K_X \cdot C = m, C \subset X \text{ rational curve } \}.$

Note that $i_X = mr_X$. Let also $\rho_X = dim N_1(X)$.

Let X be a Fano manifold. We define the *index* and the *pseudoindex*:

 $r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \text{ for some divisor}L\},\$

 $i_X = \min\{m \in \mathbb{N} \mid -K_X \cdot C = m, C \subset X \text{ rational curve } \}.$

Note that $i_X = mr_X$. Let also $\rho_X = dim N_1(X)$.

Conjecture of Mukai (1988):

$$\rho_X(r_X - 1) \le n.$$

later generalized

$$\rho_X(i_X - 1) \le n \text{ with} = \text{iff } X \simeq (\mathbb{P}^{i_X - 1})^{\rho_X}.$$

Steps toward the conjecture

-(1990) Wiśniewski: If $i_X > \frac{n+2}{2}$ then $\rho_X = 1$.

Steps toward the conjecture

-(1990) Wiśniewski: If $i_X > \frac{n+2}{2}$ then $\rho_X = 1$.

-(2002) Bonavero, Casagrande, Debarre e Druel: G.C. holds if (a) n = 4, (b) X is toric and $i_X \ge \frac{n+3}{3}$ or $n \le 7$.

Steps toward the conjecture

-(1990) Wiśniewski: If $i_X > \frac{n+2}{2}$ then $\rho_X = 1$.

-(2002) Bonavero, Casagrande, Debarre e Druel: G.C. holds if (a) n = 4, (b) X is toric and $i_X \ge \frac{n+3}{3}$ or $n \le 7$.

-(2003) Andreatta, Chierici, Occhetta: G.C. holds if (a) n = 5, (b) if $i_X \ge \frac{n+3}{3}$ and there exists a family of rational curves V which is unsplit and covers X. This is the case if X has a fiber type contraction or it does not have small contractions.

A naive proof of the conjecture

Proposition [Wi] Let V be an unsplit family and $Y \subset X$ a closed subset such that every curve in Y is independent from curves in V. Then

 $dimLocus(V)_Y \ge dimY + deg_{-K_X}V - 1.$

Proposition [Wi] Let V be an unsplit family and $Y \subset X$ a closed subset such that every curve in Y is independent from curves in V. Then

 $dimLocus(V)_Y \ge dimY + deg_{-K_X}V - 1.$

Claim. If there exist $V_1, ..., V_{\rho}$ unsplit families of r.c. whose classes are lineraly independent in $N_1(X)$ and such that $Locus(V_1, ..., V_{\rho})_x \neq \emptyset$ then the conjecture holds. **Proposition** [Wi] Let V be an unsplit family and $Y \subset X$ a closed subset such that every curve in Y is independent from curves in V. Then

 $dimLocus(V)_Y \ge dimY + deg_{-K_X}V - 1.$

Claim. If there exist $V_1, ..., V_{\rho}$ unsplit families of r.c. whose classes are lineraly independent in $N_1(X)$ and such that $Locus(V_1, ..., V_{\rho})_x \neq \emptyset$ then the conjecture holds.

It is enough to apply inductively the proposition:

 $n \ge dimLocus(V_1, ..., V_{\rho})_x \ge \Sigma_j(degV_j-1) \ge \rho(i_X-1).$

Teorema (Wiśniewski 90) If $i_X > \frac{n+2}{2}$ and $\rho_X > 1$ then there exist two families V_1, V_2 as in the claim.

Teorema (Wiśniewski 90) If $i_X > \frac{n+2}{2}$ and $\rho_X > 1$ then there exist two families V_1, V_2 as in the claim.

Let V_1 be a family which covers X with $deg_{-K_X}V_1 \leq (n+1)$ (Mori bend and break). Then, by assumption, V_1 é unsplit.

Teorema (Wiśniewski 90) If $i_X > \frac{n+2}{2}$ and $\rho_X > 1$ then there exist two families V_1, V_2 as in the claim.

Let V_1 be a family which covers X with $deg_{-K_X}V_1 \leq (n+1)$ (Mori bend and break). Then, by assumption, V_1 é unsplit.

Since $\rho_X > 1$ there must be another family whose curves are independent (cone theorem).

Teorema (Wiśniewski 90) If $i_X > \frac{n+2}{2}$ and $\rho_X > 1$ then there exist two families V_1, V_2 as in the claim.

Let V_1 be a family which covers X with $deg_{-K_X}V_1 \leq (n+1)$ (Mori bend and break). Then, by assumption, V_1 é unsplit.

Since $\rho_X > 1$ there must be another family whose curves are independent (cone theorem).

For other steps one has to put three or more families "in row"...

Classification (with high r_X or i_X).

X Fano manifold

X singular: M. Reid and his school.

$r_X \ge n+1$ \mathbb{P}^n Kobayashi-Ochiai (70) $i_X \ge n+1$ \mathbb{P}^n Cho-Miyaoka-Sh.Barr.(01)

Classification (with high r_X or i_X).

X Fano manifold

X singular: M. Reid and his school.

 $r_X \ge n+1$ \mathbb{P}^n Kobayashi-Ochiai (70) $i_X \ge n+1$ \mathbb{P}^n Cho-Miyaoka-Sh.Barr.(01) $r_X = n$ \mathbb{Q}^n Kobayashi-Ochiai (70) $i_X = n, \rho = 1$ \mathbb{Q}^n Miyaoka ?

Classification (with high r_X **or** i_X).

X Fano manifold

X singular: M. Reid and his school.

 $r_X \ge n+1$ \mathbb{P}^n Kobayashi-Ochiai (70) $i_X \ge n+1$ \mathbb{P}^n Cho-Miyaoka-Sh.Barr.(01)

 $r_X = n$ \mathbb{Q}^n Kobayashi-Ochiai (70) $i_X = n, \rho = 1$ \mathbb{Q}^n Miyaoka ?

 $r_X = n - 1$ del-Pezzo Fujita (90) $r_X = n - 2$ Mukai Fano, Isk., Mori, Mukai,

There are three main steps:

There are three main steps: First:

Try to hunt an elephant= element of the anticanonical system i.e. a smooth section $D \in L$ where $-K_X = r_X L$.

There are three main steps: First:

Try to hunt an elephant= element of the anticanonical system i.e. a smooth section $D \in L$ where $-K_X = r_X L$.

Theorem If $r_X \ge (n-1)$ then an elephant exists (Fuijta 90).

There are three main steps: First:

Try to hunt an elephant= element of the anticanonical system i.e. a smooth section $D \in L$ where $-K_X = r_X L$.

Theorem If $r_X \ge (n-1)$ then an elephant exists (Fuijta 90). If $r_X = (n-1)$ then an elephant exists (Mella 99).

Low dimension....

Second:

Observe that $-K_D = (r-1)L_D$, that is D is a Fano manifold with dimD = n - 1 and $r_D = r_X - 1$.

Low dimension....

Second:

Observe that $-K_D = (r-1)L_D$, that is *D* is a Fano manifold with dimD = n - 1 and $r_D = r_X - 1$.

So one can go down to the case r = 1; if $r_X = n - 1$ we land into the set of del Pezzo surfaces, if $r_X = n - 2$ we land into the set of Fano 3-folds. Now we have to produce examples and see that they are all: this is the more "creative" part.

Low dimension....

Second:

Observe that $-K_D = (r-1)L_D$, that is D is a Fano manifold with dimD = n - 1 and $r_D = r_X - 1$.

So one can go down to the case r = 1; if $r_X = n - 1$ we land into the set of del Pezzo surfaces, if $r_X = n - 2$ we land into the set of Fano 3-folds. Now we have to produce examples and see that they are all: this is the more "creative" part.

The last discovered Fano 3-fold (Mori-Mukai 2003): $Bl_C(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1), C \text{ curve of three} - \text{degree } (1, 1, 3)$

Third:

Time to "ascend". The adjunction theory studies, in more generality, the following problem: given $Z \subset X, Z \in |L|$ ample divisor, describe X.

Third:

Time to "ascend". The adjunction theory studies, in more generality, the following problem: given $Z \subset X, Z \in |L|$ ample divisor, describe X. For instance if Z is Fano and $-K_Z = r_Z H_Z$

$$\implies -K_X = -K_Z + L = r_Z(H_Z) + L.$$

Third:

Time to "ascend". The adjunction theory studies, in more generality, the following problem: given $Z \subset X, Z \in |L|$ ample divisor, describe X. For instance if Z is Fano and $-K_Z = r_Z H_Z$

$$\implies -K_X = -K_Z + L = r_Z(H_Z) + L.$$

Warning: in this generality H_Z need not to be ample on X (in particular X may be not Fano). We have to compare the Kleiman-Mori cones $\overline{NE(Z)}$ and $\overline{NE(X)}$.

Third:

Time to "ascend". The adjunction theory studies, in more generality, the following problem: given $Z \subset X, Z \in |L|$ ample divisor, describe X. For instance if Z is Fano and $-K_Z = r_Z H_Z$

$$\implies -K_X = -K_Z + L = r_Z(H_Z) + L.$$

Warning: in this generality H_Z need not to be ample on X (in particular X may be not Fano). We have to compare the Kleiman-Mori cones $\overline{NE(Z)}$ and $\overline{NE(X)}$. Remark This is not a problem if we start by X.

tell me which cone you have and 1/11 tell who you are

Theorem Andreatta-Novelli-Occhetta (2003). If $r_Z \ge dim Z/2 \ge 2$ then X is Fano and $\overline{NE(Z)} = \overline{NE(X)}$, except if $Z = \mathbb{P}^1 \times V$, with $V = \mathbb{P}^3$ a del Pezzo 3-fold (and $\exists X \to \mathbb{P}^1$ with fiber \mathbb{P}^4 or a del Pezzo 4-fold).

tell me which cone you have and 1/11 tell who you are

Theorem Andreatta-Novelli-Occhetta (2003). If $r_Z \ge dim Z/2 \ge 2$ then X is Fano and $\overline{NE(Z)} = \overline{NE(X)}$, except if $Z = \mathbb{P}^1 \times V$, with $V = \mathbb{P}^3$ a del Pezzo 3-fold (and $\exists X \to \mathbb{P}^1$ with fiber \mathbb{P}^4 or a del Pezzo 4-fold). Corollary We can classify all X whose ample section is a Fano manifold of index $\ge (n-2) \ge 3$.

tell me which cone you have and 1/11 tell who you are

Theorem Andreatta-Novelli-Occhetta (2003). If $r_Z \ge dim Z/2 \ge 2$ then X is Fano and $\overline{NE(Z)} = \overline{NE(X)}$, except if $Z = \mathbb{P}^1 \times V$, with $V = \mathbb{P}^3$ a del Pezzo 3-fold (and $\exists X \to \mathbb{P}^1$ with fiber \mathbb{P}^4 or a del Pezzo 4-fold). Corollary We can classify all X whose ample section is a Fano manifold of index $\ge (n-2) \ge 3$.

Remark:

- 1) if L is very ample the theorem is by Beltrametti-Fania-Sommese
- 2) The last discvered Fano 3-fold does not ascend

.and if the pseudoindex is high?

Theorem Chierici-Occhetta (2004). Let X be a Fano manifold with $i_X = dim X - 3$, $dim X \ge 4$ (and $\rho_X \ge 2$). The cones $\overline{NE(X)}$ are listed for all possible X. In particular $\overline{NE(X)}$ is generated by ρ_X rays.

.and if the pseudoindex is high?

Theorem Chierici-Occhetta (2004). Let X be a Fano manifold with $i_X = dim X - 3$, $dim X \ge 4$ (and $\rho_X \ge 2$). The cones $\overline{NE(X)}$ are listed for all possible X. In particular $\overline{NE(X)}$ is generated by ρ_X rays.

Moreover X has always an elementary fiber type contraction except when: X is the blow up of \mathbb{P}^5 along one of the following surfaces: a smooth quadric, a cubic scroll in \mathbb{P}^4 , a Veronese surface.