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Positivity of the tangent bundle

X Is a projective manifold and 7T'X its tangent bundle.
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Positivity of the tangent bundle

X Is a projective manifold and 7T'X its tangent bundle.

- TX Is ample iff X = P", Mori '79

- £ C T'X ample subbundle iff X = P™,
Andreatta-Wisniewski 'O1.

- T'X Is not generically seminegative

l.e. 3 — T'X and {C,} a family of curves such that
c1(£)Cy > 0and {C;} covers X

Iff X is uniruled Miyaoka '87.
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Minimal Model Conjecture

Conjecture
X 1s uniruled Iff X ~ a fibration in Fano varieties.
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Minimal Model Conjecture

Conjecture
X 1s uniruled Iff X ~ a fibration in Fano varieties.

A manifold X is Fano if —Kx := detT X Is ample.

The if part was proved by Kollar-Miyaoka-Mori,
the only if is in the Minimal model conjecture.
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Rational curves

On uniruled varieties we have families of rational curves,
l.e. irreducible components

V' C Ratcurves™(X) := Hom. (PY, X')/Aut(P')
(V.. Is the subfamily of the curves passing through x).

Recent results on Fano manifolds — p.5/22



Rational curves

On uniruled varieties we have families of rational curves,
l.e. irreducible components

V' C Ratcurves™(X) := Hom. (PY, X')/Aut(P')
(V.. Is the subfamily of the curves passing through x).

Deformation theory+Rieman-Roch give a bound to the
dimension from below: let C be a curve in V

dimV > —KX'O + (n — 3),

dszx > —Kx°0 — 2.
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Rational curves

On uniruled varieties we have families of rational curves,
l.e. irreducible components

V' C Ratcurves™(X) := Hom. (PY, X')/Aut(P')
(V.. Is the subfamily of the curves passing through x).

Deformation theory+Rieman-Roch give a bound to the
dimension from below: let C be a curve in V

dimV > —KX'O + (n — 3),
dszx > —Kx°0 — 2.

Note that it works well for Fano manifolds
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Special rational curves

Families which are m ni mal or almost lines:

minimal with respect to the intersection with — K x
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Special rational curves

Families which are m ni mal or almost lines:

minimal with respect to the intersection with — K x
unsplit if V' Is proper.
locally unsplit if V, is proper.

generically unsplit if through two generic points pass
only finitely many curves in the family.

(minimal = unsplit = locally unsplit = gen. unsplit).

Remark. If V' is gen unsplit then:
dimLocus(Vy) =dimV, +1> —Kx C — 1.
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Uniruledness of Fano manifolds

Theorem [Mori] and [Kollar-Mori-Miyaoka]

Let X be a Fano manifold (and let 7 : X — Z° be a proper
surjective morphism).

There exists a family V' of rational curves such that

V' iIs generically unsplit

for z € Z° generic there exists a C in V' such that
CNa1(z) # 0 and C is not contained in 7~ !(2)
(covering family).
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Mori - bend and break

Proof of generically unsplittedness :

“«\ 3133 \
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An observation of WisniewskKi

Proposition Let V' be an unsplit family.
Then p(Locus(V,)) = 1.
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An observation of WisniewskKi

Proposition Let V' be an unsplit family.
Then p(Locus(V,)) = 1.

Proposition Let V be an unsplit family and Y € X a closed

subset such that every curve in Y is independent from
curves in V. Then

dimLocus(V)y > dimY + deg_g,V — 1.
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Rationally connected fibrations.

LetX be uniruled, z,y € X and define :
x ~ y Iff 3 a chain of rational curves through = and y.
x ~,.v y Iff 3 achain of rational curves € V through x and y
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Rationally connected fibrations.

LetX be uniruled, z,y € X and define :
x ~ y Iff 3 a chain of rational curves through = and y.
x ~,.v y Iff 3 achain of rational curves € V through x and y

Theorem [Campana] and [Kollar-Miyaoka-Mori ] (1992)
The exists an open set X' ¢ X and a map ¢" : X — Z°
which is proper, with connected fiber and whose fibers are
equivalence classes for the equivalence relation ~
(therefore they are rationally connected).

If V' Is unsplit the same is true for ~,.;, (and the fibers are
rationally connected with respect to V).
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A conjecture of Mukal

Let X be a Fano manifold. We define the index and the
pseudoindex:
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A conjecture of Mukal

Let X be a Fano manifold. We define the index and the
pseudoindex:

rx = max{m € N | — Kx = mL for some divisorL},
ix =min{m € N| — Kx - C'=m,C C X rational curve }.

Note that ix = mrx. Letalso px = dimN;(X).
Conjecture of Mukali (1988):

/OX(TX — 1) S 1.
later generalized
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Steps toward the conjecture

-(1990) WiSniewski:
If ix > 2= then px = 1.
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Steps toward the conjecture

-(1990) WiSniewski:
If ix > 2= then px = 1.

-(2001) Cho-Miyaoka-Sh-Barron:
G.C.holdsifix >n+1

-(2002) Bonavero, Casagrande, Debarre e Druel:
G.C. holds if (a) n = 4,
(b) X istoricand ix > 22 orn < 7.
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Steps toward the conjecture

-(2003) Andreatta,Chierici,Occhetta:

G.C. holds if (a) n = 5,

(b) if ix > %2 and there exists a family of rational curves V
which is unsplit and covers X.

This is the case If X has a fiber type contraction or it does
not have small contractions.
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Steps toward the conjecture

-(2003) Andreatta,Chierici,Occhetta:
G.C. holds if (a) n = 5,
(b) if ix > %2 and there exists a family of rational curves V

which is unsplit and covers X.
This is the case If X has a fiber type contraction or it does
not have small contractions.

-(2004) Casagrande:
G.C. holds for toric varieties
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A naive proof of the first part

Proposition [Wi] Let V' be an unsplit familyand Y C X a
closed subset such that every curve in Y Is independent
from curves in V. Then

dimLocus(V)y > dimY + deg_g,V — 1.
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A naive proof of the first part

Proposition [Wi] Let V' be an unsplit familyand Y C X a
closed subset such that every curve in Y Is independent
from curves in V. Then

dimLocus(V)y > dimY + deg_g,V — 1.

Claim. If there exist V1, ..., V, unsplit families of r.c. whose
classes are lineraly independent in N;(X) and such that
Locus(Vi, ..., V,). # (0 then the conjecture holds.
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A naive proof of the first part

Proposition [Wi] Let V' be an unsplit familyand Y C X a
closed subset such that every curve in Y Is independent
from curves in V. Then

dimLocus(V)y > dimY + deg_g,V — 1.

Claim. If there exist V1, ..., V, unsplit families of r.c. whose
classes are lineraly independent in N;(X) and such that
Locus(Vi, ..., V,). # (0 then the conjecture holds.

It is enough to apply inductively the proposition:

n > dimLocus(Vi,...,V,), > X,(degV; — 1) > p(ix — 1).
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hints of proof

Theorem (Wisniewski 90)
If ix > 22 and px > 1 then there exist two families V;, V5
as in the claim. In fact:

Recent results on Fano manifolds — p.15/22



hints of proof

Theorem (Wisniewski 90)

If ix > 22 and px > 1 then there exist two families V;, V5
as in the claim. In fact:

Let V1 be a family which covers X with deg_x,. V7 < (n+1).
Then, by assumption, V; € unspilit.
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hints of proof

Theorem (Wisniewski 90)
If ix > 22 and px > 1 then there exist two families V;, V5
as in the claim. In fact:

Let V1 be a family which covers X with deg_x,. V7 < (n+1).
Then, by assumption, V; € unspilit.

Since px > 1 there must be another family whose curves
are independent (cone theorem).
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hints of proof

In general one try to start with an unsplit dominant family V/

and construct the rcV -fibration.
If the dimension of the target is zero (i.e. X is rationally

V-connected) then p = 1.
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hints of proof

In general one try to start with an unsplit dominant family V/

and construct the rcV -fibration.
If the dimension of the target is zero (i.e. X is rationally

V-connected) then p = 1.

If not there exists a locally unsplit family V' which is
transverse and dominant with respect to the rcV -fibration.

By our assumption ¢ x > ”T”’ also this family is unsplit.
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hints of proof

In general one try to start with an unsplit dominant family V/

and construct the rcV -fibration.
If the dimension of the target is zero (i.e. X is rationally

V-connected) then p = 1.

If not there exists a locally unsplit family V' which is
transverse and dominant with respect to the rcV -fibration.

By our assumption ¢ x > ”T”’ also this family is unsplit.

Construct the r¢(V, V')-fibration. If the dimension of the
target is zero then p = 2.
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The second part of the conjecture

Theorem [Cho-Miyaoka-Sh.Barron] - [Kebekus]

If there exists a family of rational curves V' of degree
dimX + 1, unsplit (and dominant, i.e. Locus(X) = X) then
X Is the projective space.
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The second part of the conjecture

Theorem [Cho-Miyaoka-Sh.Barron] - [Kebekus]

If there exists a family of rational curves V' of degree
dimX + 1, unsplit (and dominant, i.e. Locus(X) = X) then
X Is the projective space.

Theorem [G. Occhetta]
If there exist k& families of rational curves which are unspilit,
dominant, independent in N;(X) and whose sum of degree

minus k is equal to dim X then X Is the product of &
projective spaces.
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The second part, proof

The key point is to prove that, for x generic, the natural
derivative map (Mori),

O, V' — P(T.X) = P((f"TX)o)

O, (Lf]) = [(df )o(0/01)]

IS birational.
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The second part, proof

The key point is to prove that, for x generic, the natural
derivative map (Mori),

O, V' — P(T.X) = P((f"TX)o)

®.([f]) = [(df)o(D/ )]
IS birational.

- &, I1s a regular map and it is finite (Kebekus).
- &, is surjective (thisis clear if —Kx C > (n+ 1))
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The second part, proof

The key point is to prove that, for x generic, the natural
derivative map (Mori),

O, V' — P(T.X) = P((f"TX)o)

®.([f]) = [(df)o(D/ )]
IS birational.

- &, Is a regular map and it is finite (Kebekus).

- ®, is surjective (thisis clearif —Kx C' > (n+ 1))

- If ®,, Is surjective then it is birational and thus a
biholomorphism (a lemma of Miyaoka says that if ¢, is not
generically injective then there exists a curve in V' singular
at ).
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IP)l
del Pezzo

Fano, Iskovskii
Mori, Mukal

Classification
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Classification

IP)l
del Pezzo

Fano, Iskovskii
Mori, Mukal

W NN -3

The last discovered Fano 3-fold (Mori-Mukai 2003):
Blo(P! x Pt x PY), C curve of 3 — degree (1,1, 3)
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Classification

n Tx

1 || P! n+1| P

2 || del Pezzo n Qn

3 || Fano, Iskovskii n — 1 || del Pezzo-Fujita
Mori, Mukal n — 2 || Mukal

The last discovered Fano 3-fold (Mori-Mukai 2003):
Blo(P! x Pt x P'), C curve of 3 — degree (1,1, 3)
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Classification

n x

1 || P! n+1| P

2 || del Pezzo n Qn

3 || Fano, Iskovskii n — 1 || del Pezzo-Fujita
Mori, Mukal n — 2 || Mukal

The last discovered Fano 3-fold (Mori-Mukai 2003):
Blo(P! x Pt x P'), C curve of 3 — degree (1,1, 3)

By induction, or adjunction, restricting to an elephant =
element of the anticanonical system i.e. a smooth section
D € L where —Kx = rx L, whose existence is by Fujita-90
(rx > (n — 1)) and Mella-99 (rx = (n — 2)).
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ox > 2, the two rays game

If px > 2 the right invariant is the pseudondex 7 x.
Forinstance X =P* x P"*' hasry =1and iy =n + 1.
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Let R be an extremal ray of X of length [(R) > ix and
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ox > 2, the two rays game

If px > 2 the right invariant is the pseudondex 7 x.
Forinstance X =P* x P"*' hasry =1and iy =n + 1.

Let R be an extremal ray of X of length [(R) > ix and
denote by Exzc(R) its exceptional locus.

Theorem [Andreatta-Occhetta (2004)]. If px > 2

(2ix <) I(R) +ix < dim Ezc(R) + 2.

If equality holds and R is not small then
X ~P*" x P" % or X ~ Blp.(P") with k < 22

Recent results on Fano manifolds — p.20/22



px > 2, the blow-ups

Let X be the the blow up of a manifold Y along 7' C Y, and
letix >dimT + 1 (i.e. [(R)+ix = dim Ezc(R) + 1).
Then X is one of the following

1.
2.
3.

N oo 0o b

Bl,(P™).
Bl,(Q™).

Bl,(Vy) where V; is Bly (P™) and Y is a submanifold of dimension n — 2 and
degree < n contained in an hyperplane.

The blow up of P along a P* with &k < 2 — 1.
Pl x Bl,(P*—1).

The blow up of Q™ along a P* with &k < Z — 1.
The blow up of Q™ along a Q" with k¥ < Z — 1.
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px > 2, high pseudoindex

Theorem [Chierici-Occhetta (2004)].
Let X be a Fano manifold with 1y = dimX — 3, dimX > 5
and px > 2.

The cones N E(X) are listed for all possible X. In
particular it is generated by px rays.
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px > 2, high pseudoindex

Theorem [Chierici-Occhetta (2004)].

Let X be a Fano manifold with 1y = dimX — 3, dimX > 5
and px > 2.

The cones N E(X) are listed for all possible X. In
particular it is generated by px rays.

Moreover X has always an elementary fiber type
contraction except when:

X is the blow up of P° along one of the following surfaces:
a smooth quadric, a cubic scroll in P*, a Veronese surface.
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