

MMP on q. p.v.

Dolowinod contest

 Δ' -MMP

Extremal rays

Weighted Blow-

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$

 $K_X + \Delta^{(n-2)}$

$$\binom{n-3}{2} < \tau \le$$

Minimal Model Program and Adjunction Theory

Marco Andreatta

Dipartimento di Matematica di Trento, Italia

Seoul, February 2014

Quasi polarized pairs

MMP on q. p.v.

Marco Andreat

Polarized variety

 Δ^r -MMP

Weighted Blow-

Castenuovo-

contractions $K_V + \Delta^{(n-1)}$

MMP

 $K_X + \Delta^{(n-2)}$ MMP

 $(n-3) < \tau < (n-2)$

Let X be a projective variety with terminal and \mathbb{Q} -factorial singularities of dimension n.

Let *L* be a Cartier divisor (a line bundle) which is ample, or simply nef and big.

The pair (X, L) is called a polarized pair, or a quasi polarized pair.

For instance let $X \subset \mathbb{P}^N$ be a projective variety and $L := \mathcal{O}(1)_{|X}$, or better its (partial) desingularizaton and the pull back of L.

Classical problems

MMP on q. p.v.

Marco Andreat

Polarized variety

Extremal rays

Weighted Blow-up

Kawakita contractions $K_X + \Delta^{(n-1)}$

MMP $K_X + \Delta^{(n-2)}$

Problem Given a general element $D \in |L|$ (assume that X is not a cone over D).

Which properties of *D* lift to *X*; do these properties determine *X* ?

Enriques—Castelnuovo studied the case in which *X* is a surface and *D* is a curve of low genus, or of minimal degree, ...

Sakai studied the case in which *X* is a normal surface.

Fano studied the case in which *X* is a 3-fold and *D* is a *K*3 surface.

Mori in his first paper proved that if D is a c.i. in a weighted projective space the same is for X.

Sommese proved that abelian and bi-elliptic surfaces cannot be ample sections, unless *X* is a cone.

Adjunction Theory

MMP on q. p.v.

Marco Andreau

Polarized variety

 Δ^r -MN

Extremal rays

Weighted Blow-u

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$

$$\binom{n-3}{2} < \tau$$

Adjunction Theory wants to classify quasi polarized pairs via the study of the nefness of the adjont bundles

$$K_X + rL$$

with *r* natural (or rational) positive number.

Assume that there exist r sections of |L| which intersect in a n-r variety D, with terminal singularities (r=n-1, we ask for a smooth curve).

To get nefness of $K_X + rL$ implies, by adjunction $(K_X + rL)_{|D} = K_D$, to get a minimal model for D.

Minimal Model Program- BCHM

MMP on q. p.v.

Marco Andreatt

 Δ^r -MMP

Extremal rays

Weighted Blow-

Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_Y + \Delta^{(n-2)}$

 $(n-3) < \tau$

A log pair (X, Δ) , i.e a normal variety X and an effective \mathbb{R} divisor Δ , is Kawamata log terminal (klt) if:

 $K_X + \Delta$ is \mathbb{R} -Cartier and for a (any) log resolution $g: Y \to X$ we have $g^*(K_X + \Delta) = K_Y + \Sigma b_i \Gamma_i$ with $b_i < 1$, for all i.

By BCHM on a klt log pair (X, Δ) , with Δ big, we can run a

 $K_X + \Delta$ - Minimal Model Program with scaling:

$$(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow --- \rightarrow (X_s, \Delta_s)$$

Minimal Model Program- BCHM

MMP on a. p.v.

Polarized varie
$$\Delta^r$$
-MMP

$$\stackrel{\triangle}{\text{MMP}}$$

$$(n-3) < \tau \le (n-2)$$

$$(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow ---- \rightarrow (X_s, \Delta_s)$$

such that:

- 1) (X_i, Δ_i) is a klt log pair, for i = 0, ..., s;
- 2) $\varphi_i: X_i \to X_{i+1}$ is a birational map which is either a divisorial contraction or a flip associated with an extremal ray $R_i = \mathbb{R}^+[C_i]$ such that $(K_{X_i} + \Delta_i) \cdot C_i < 0$

(notation: $R_i \in NE(X_i)_{(K_{X_i} + \Delta_i) < 0} \subset NE(X_i)_{K_{X_i} < 0}$)

3) either $K_{X_s} + \Delta_s$ is nef (i.e. (X_s, Δ_s) is a log Minimal Model), or $X_s \to Z$ is a Mori fiber space relatively to $K_{X_s} + \Delta_s$ (depending on the pseudeffectivity of $K_X + \Delta$).

MMP for a q.p. pair

MMP on q. p.v.

Let (X, L) be a quasi-polarized variety: let $r \in \mathbb{Q}^+$.

Polorized variety

 Δ^r -MMP

Lemma (zip L into a boundary). Since L is nef and big there exists an effective \mathbb{Q} -divisor Δ^r on X such that

 $rL \sim_{\mathbb{Q}} \Delta^r$ and (X, Δ^r) is Kawamata log terminal.

Castenuovo-Kawakita contractions

Run a $K_X + \Delta^r$ -MMP and get a birational klt pair (X_s, Δ_s^r) which is

MMP (n. 2)

- either a Minimal Model $(K_{X_s} + \Delta_s \text{ is nef})$

MMP

- or $X_s \to Z$ is a Mori fiber space relatively to $K_{X_s} + \Delta_s$.

Remarks/Problems

- (X_s, Δ_s^r) is not necessarily an (r) q.p. pair, i.e. we do not have a priori a nef and big Cartier divisor L_s such that $rL_s \sim_{\mathbb{Q}} \Delta_s^r$.
- Beyond the existence of the MMP, it would be nice to have a "description" of each steps and eventually of the Mori fiber spaces.

Extremal rays

MMP on q. p.v.

Marco Andreatta

 Δ^r -M

Extremal rays

Weighted Blow-up

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$ MMP

$$(n-3) < \tau < (n-2)$$

For the above program we study the (Fano-Mori) contractions:

$$\varphi: X \to Y$$

associated to a rays $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X + rL) < 0} \subset \overline{NE(X)}_{K_X < 0}$.

That is φ is a projective map between normal variety, with connected fibers, X has terminal \mathbb{Q} -factorial singularities and an irreducible curve $C \subset X$ is mapped to a point by φ iff $[C] \in R$.

- φ can be of fiber type (dimX > dimY), φ is called a Mori fiber space
- or birational, φ can then be divisorial or small

Let F be a non trivial fiber of φ ; we possibly restrict to an affine neighborhood of the image of F (local set up).

Then $(K_X + \tau L) \sim_{\varphi} \mathcal{O}_X$ for a rational $\tau > r$.

Apollonio method

MMP on q. p.v.

Marco Andreat

Extremal rays

Weighted Bl

Castenuovo-

Kawakita contractions

 $K_X + \Delta^{(n-1)}$

 $K_X + \Delta^{(n-1)}$

MMP

$$(n-3) < \tau \le (n-2)$$

Let $X' \in |L|$ a generic divisor with "good singularities". We have:

- $\varphi_{|X'} := \varphi' : X' \to Y'$ is a contraction with connected fibre, around $F' := F \cap X'$;

it is the Fano-Mori contraction associate to $R' \in \overline{NE(X')}_{(K_{X'}+(r-1)L')<0}$.

- Any section of L on X' extends to a section of L on X.

Base point free technique

MMP on q. p.v.

Extremal rays

Theorem [Fano, Fujita, Kawamata, Kollar, ...,, A-Wisniewski, Mella, A-Tasin]

- \blacksquare dimF > (r-1); if φ is birational then dimF > r.
- If dim F < r + 1, or dim $F \le r + 1$ if φ is birational, then L is very ample (relatively to φ).
- If dim F < r + 2 then there exists $X' \in |L|$ with "good" singularities (i.e. as in X). The same is true if $\dim F = r + 2$, except for two cases in which n = 3 and φ is of fiber type.

Weighted Blow-up

MMP on q. p.v.

Marco Andreatt

Extremal re

Weighted Blow-up

Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$ MMP

$$(n-3) < \tau \le (n-2)$$

Let $X = \mathbb{A}^n = \operatorname{Spec} \mathbb{C}[x_1, \dots, x_n], Z = \{x_1 = \dots = x_k = 0\} \subset X$ and $\mathbb{P}(a_1, \dots, a_k)$ the weighted projective space with weight (a_1, \dots, a_k) .

Consider the rational map

$$\varphi: \mathbb{A}^n \to \mathbb{P}(a_1, \ldots, a_k)$$

given by $(x_1, ..., x_n) \mapsto (x_1^{a_1} : ... : x_k^{a_k})$.

The *weighted blow-up* of X along Z with weight $\sigma=(a_1,\ldots,a_k,0,\ldots,0)$ is defined as the closure \overline{X} in $\mathbb{A}^n\times\mathbb{P}(a_1,\ldots,a_k)$ of the graph of φ , together with the morphism $\pi:\overline{X}\to X$ given by the projection on the first factor.

The map π is birational and contracts an exceptional irreducible divisor E to Z. Moreover for any point $z \in Z$ we have $\pi^{-1}(z) = \mathbb{P}(a_1, \dots, a_k)$.

Weighted Projective Space

MMP on q. p.v.

Marco Andreat

Polorized veri

Weighted Blow-up

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_Y + \Delta^{(n-2)}$

$$(n-3) < \tau$$

For any $d \in \mathbb{N}$ we define the σ -weighted ideal of degree d as

$$I_{\sigma,d} = \{g \in \mathbb{C}[x_1,\ldots,x_n] : \sigma\text{-wt}(g) \geq d\} = (x_1^{s_1}\cdots x_n^{s_n} : \sum_{i=1}^k s_i a_i \geq d).$$

The weighted blow-up of $X = \mathbb{A}^n$ along $Z = \{x_1 = \ldots = x_k = 0\}$ with weight $\sigma = (a_1, \ldots, a_k, 0, \ldots, 0), \pi : \overline{X} \to X$, is given by

$$\overline{X} = \operatorname{Proj} \bigoplus_{d>0} I_{\sigma,d} \to X.$$

Castelnuovo-Kawakita

MMP on q. p.v.

Marco Andreatta

Extremal rays
Weighted Blow-up

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$

(n-3) <

$\binom{n-3}{n-2}$ $\stackrel{\tau}{\sim}$ is

Theorem

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X + (n-2)L) < 0} \subset \overline{NE(X)}_{K_X < 0}$.

(i.e.a birational map in a $K_X + \Delta^{n-2}$ -MMP)

Then $\varphi: X \to Y$ is the weighted blow-up of a smooth point in Y of weights (1, 1, b,, b), where b is a natural positive number.

 $L' = \varphi_*(L)$ is a Cartier divisor on Y such that $\varphi^*L' = L + bE$, where E is the exceptional (Weil) divisor.

Definition

We call such φ a Castelnuovo-Kawakita contraction.

Proof

MMP on q. p.v.

Marco Andreatt

Polarized va

Extremal rays

Weighted Blow-u

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$

 $K_X + \Delta^{(n-2)}$

 $\begin{array}{l}
\text{MMP} \\
(n-3) < \tau
\end{array}$

We have dim F > (n-2); thus dim F = (n-1) and φ is a contraction of a divisor to a point.

By the base point free theorem, we can assume L is very ample.

Thus we get the existence of sections in |L| with terminal singularities. Inductively, slicing with (n-2) general sections of |L|, we can reduce to the case of a Fano Mori contraction on a surface.

Surfaces with terminal singularities are smooth. Apply now Castelnuovo's Theorem to have that the image is smooth.

Since Y has terminal \mathbb{Q} -factorial singularities this implies that Y is smooth at the exceptional point.

Proof

MMP on q. p.v.

Marco Andreatta

Polarized varie

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$

 $\binom{n-3}{2} < \tau$

Since $X = \operatorname{Proj}_{\mathcal{O}_Z}(\bigoplus_{d \geq 0} f_*(\mathcal{O}_X(-dbE)))$, we want to prove that

$$f_*(\mathcal{O}_X(-dbE) = (x_1^{s_1} \cdots x_n^{s_n} \mid s_1 + s_2 + \sum_{j=3}^n bs_j \ge db).$$

a) consider a general element $X' \in |L|$; the restricted morphism $f' := f_{|X'} : X' \to Y' := f(X')$ is a divisorial Fano-Mori contraction of a ray $R' \in \overline{NE(X')}_{(K_{X'}+(r-1)L)<0}$.

By the above step Y and Y' are smooth; thus we can assume $Y' = \{x_n = 0\} \subset Y$.

By induction

$$f_*(\mathcal{O}_{X'}(-dbE) = (x_1^{s_1} \cdots x_{(n-1)}^{s_{(n-1)}} \mid s_1 + s_2 + \sum_{i=3}^{n-1} bs_i \ge db).$$

Proof

MMP on q. p.v.

Marco Andreatta

$$\Delta^r$$
-MMP

Extremal rays
Weighted Blow-m

Castenuovo-Kawakita contractions

$$K_X + \Delta^{(n-1)}$$

MMP

$$K_X + \Delta^{(n-2)}$$

$$(n-3) < \tau \le (n-2)$$

b) Consider the exact sequence on *X*

$$0 \to \mathcal{O}_X(-X'-dbE) \to \mathcal{O}_X(-dbE) \to \mathcal{O}_{X'}(-dbE) \to 0$$

Pushing it down via φ and using the Relative Kawamata-Viehweg Vanishing we have

$$0 \to f_*\mathcal{O}_X(-(d-1)bE) \stackrel{\cdot_{X_q}}{\to} f_*\mathcal{O}_X(-dbE) \to f_*\mathcal{O}_{X'}(-dbE) \to 0.$$

The proposition follows by induction on n

$$(f_*(\mathcal{O}_{X'}(-dbE) = (x_1^{s_1} \cdots x_{(n-1)}^{s_{(n-1)}} \mid s_1 + s_2 + \sum_{j=3}^{n-1} bs_j \ge db)))$$
and on d

$$(f_*(\mathcal{O}_X(-(d-1)bE) = (x_1^{s_1} \cdots x_n^{s_n} \mid s_1 + s_2 + \sum_{j=3}^n bs_j \ge (d-1)b))$$

$$r = (n-1)$$

MMP on q. p.v.

Marco Andreatta

Polorized veri

 Δ^r -MMP

Extremarrays

Weighted Blow-

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$.

 $K_X + \Delta^{(n-2)}$

 $(n-3) < \tau \le (n-3)$

Consider a $K_X + \Delta^r$ -MMP with r = (n-1) (or $\geq (n-1)$) and let $R_i = \mathbb{R}^+[C_i]$ be a birational ray in the sequence.

Inductively construct a nef and big Cartier divisor L_i on X_i such that $rL_i \sim_{\mathbb{Q}} \Delta_i^{(n-1)}$:

- 1) $L_i C_i = 0$, otherwise, by the above Theorem, we have the contradiction $(n-1) \ge \dim F > r \ge (n-1)$.
- 2) Let $\varphi_i: X_i \to Y$ be the contraction associated with R_i . We have a Cartier divisor L'_{i+1} such that $\varphi^*(L'_{i+1}) = L_i$.

If φ is birational $(X_{i+1}, L_{i+1}) := (Y, L'_{i+1}),$

if φ is small $(X_{i+1}, L_{i+1}) := (X_i^+, \varphi^+(L'_{i+1}))$, where $\varphi^+ : X_i^+ \to Y$ is the flip.

the zero reduction

MMP on q. p.v.

Marco Andreatt

Polarized vari

Extremal rays

Weighted Blow-u

Castenuovo-Kawakita contractions

 $\frac{K_X}{MMP} + \frac{\Delta^{(n-1)}}{\Delta^{(n-1)}}$

 $K_Y + \Delta^{(n-2)}$

 $(n-3) < \tau \le$

Proposition. Given a q.p. pair (X, L) it is possible to run a MMP which contracts all extremal rays on which L is zero and obtain a q.p. pair (X', L') which is birational equivalent to (X, L) and such that:

- \blacksquare either $K_{X'} + (n-1)L'$ is nef
- or (X', L') is a Mori space relative to $K_{X'} + (n-1)L'$ and L' is a (relatively) very ample Cartier divisor.

Definition. (X', L') is called a zero reduction of (X, L).

By very classical results in the second case the q.p. pair (X', L') is in a obvious finite list of examples: $(\mathbb{P}^n, \mathcal{O}(1)), (Q, \mathcal{O}(1)),$ scrolls, del Pezzo.

Applications

MMP on q. p.v.

Marco Andreatt

 Δ^r -MMP

Extremal rays

Weighted Blow-

Castenuovo-Kawakita contractions

$$K_X + \Delta^{(n-1)}$$
-
MMP

 $K_X + \Delta^{(n-2)}$

$$(n-3) < \tau \le$$

Let (X, L) be a quasi-polarized variety and g(X, L) be its sectional genus: $2g(X, L) - 2 = (K_X + (n-1)L) \cdot L \cdot ... \cdot L)$.

(if L is spanned it is the genus of a curve intersection of n-1 general elements in |L|.

- Classification of pairs $g(X, L) \le 0$ $(K_X + (n-1)L)$ is not nef (therefore not pseudoeffective) and the zero reduction of (X, L) is among the above pairs
- Classification of pairs with g(X, L) = 1.
- Classification of pairs of minimal degree (i.e. $L^n = h^0(X, L) n$).

First Reduction

MMP on q. p.v.

Marco Andreatt

Extremal rays

Weighted Blow-up

Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$.
MMP

$$(n-3) < \tau \le$$

Proposition-Part 1. Let (X, L) be a q.p. pair. There exists a q.p. pair (X'', L'') which is a $(K_X + \Delta^{n-2})$ -MM and which can be obtained with the following procedure:

- Take a zero reduction (X', L').
- Contract, step by step, all Castelnuovo-Kawakita type extremal rays, such that $L'_{|E|} = -bE_{|E|}$; $\varphi': X' \to X''$.
- $\blacksquare \ \mathrm{Let} \ L'' := \varphi'_*L'.$

Definition The pair (X'', L'') is called a First Reduction of the pair (X, L).

First Reduction

MMP on q. p.v.

Marco Andreatt

Extremal rays

Weighted Blow-u

Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$.
MMP

 $(n-3) < \tau \le (n-3)$

Proposition-Part 2. Let (X, L) be a q.p. pair and let (X'', L'') be its First Reduction. Then

- \blacksquare either $K_{X''} + (n-2)L''$ is nef
- or $X'' \to Z$ is a Mori fiber space relatively to $K_{X''} + (n-2)L''$ and L'' is (relatively) very ample with one exception (del Pezzo manifold). In all cases there exists a divisor in |L''| with good singularities.

Remark. The classification of the pairs in the second part, thank to the existence of a good section, is classical and reduces to the theory of algebraic surfaces. (Quadric fibration, del Pezzo manifolds,)

Applications

MMP on q. p.v.

Marco Andreatt

Extremal rays

Weighted Blow-

Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$.
MMP

$$\binom{n-3}{2} < \tau$$

Theorem. Let $Y \subset \mathbb{P}^N$ be a non degenerate projective variety of dimension $n \geq 3$ of degree d and let $\tilde{L} := \mathcal{O}(1)_{|Y}$. Assume that $d < 2codim_{\mathbb{P}^N}(X) + 2$.

Then on a desingularization (X, L) the divisor $K_X + (n-2)L$ is not pseudoeffective.

Therefore $(Y, \mathcal{O}(1))$ is equivalent, via birational equivalence and first-reduction, to a q.p. pair (X'', L'') in the above Remark.

$$(n-3) < \tau \le (n-2)$$

MMP on q. p.v.

Marco Andreatta

A.F. MAN

Extremal ra

Weighted Blow-t

Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$

$$\binom{n-3}{r-2} < \tau \le$$

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $(n-3) < \tau < (n-2)$.

(These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP).

We have the following possibilities for φ .

- $\ \ \varphi$ contracts a divisor to a curve (it is a special case of the next theorem),
- $\mathbf{2} \quad \varphi \text{ contracts a divisor to a point,}$
- 3 φ is a small contraction with exc. locus of dimension (n-2).

In all cases we can apply the "base point free technique", find therefore a section $X' \in |L|$ and, by induction if possible, reduce to the case n = 3 where we have a complete classification.

Then we like to "lift" this classification and the examples to higher dimension.

Divisorial contractions with small fibers

MMP on q. p.v.

Marco Andreatt

Polarized varie Δ^r -MMP

Weighted Blow-up

Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$

 $(n-3) < \tau \le (n-2)$

Theorem. Let $f: X \to Z$ be a divisorial contraction associated to an extremal ray R in $\overline{NE(X)}_{(K_X+rL)<0}$, where $r \in \mathbb{N}^+$, such that $L \cdot C > 0$. Let E be the exceptional locus of f and set $C := f(E) \subset Z$.

Assume that all fibres have dimension less or equal to r + 1.

- Then there is a closed subset $S \subset Z$ of codimension al least 3 such that $Z' = Z \setminus S$ and $C' = C \setminus S$ are smooth, codim_{Z'} C' = r + 2 and $f' : X' = X \setminus f^{-1}(S) \to Z'$ is a weighted blow-up along C' with weight $\sigma = (1, 1, b \dots, b, 0, \dots, 0)$, where the number of b's is r.
- 2 Let \mathcal{I}' be a σ -weighted ideal sheaf of degree b for $Z' \subset X'$ and let $i: Z' \to Z$ be the inclusion; let also $\mathcal{I} := i_*(\mathcal{I}')$ and $\mathcal{I}^{(m)}$ be the m-th symbolic power of \mathcal{I} . Then $X = \operatorname{Proj} \bigoplus_{m \ge 0} \mathcal{I}^{(m)}$.

Kawakita Contractions

MMP on q. p.v.

Marco Andreatt

Extremal rays

Weighted Blow-u

Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$

$$(n-3) < \tau$$

$$(n-2)$$

The second case was treated for n = 3 in a series of paper by Kawakita.

We would like to extend Kawakita classification and show that φ is a weighted blow-up of a (possible singular) point.

We are trying to use Cox Rings of weighted blow-ups:

- they determine completely the blow-up,
- there are some new general results on the relation between the Cox Ring of a variety and of an ample section.

Small Contractions

MMP on q. p.v.

Marco Andreatt

Extremal rays

Weighted Blow

Kawakita contractions

$$K_X + \Delta^{(n-1)}$$
MMP

$$K_X + \Delta^{(n-2)}$$

$$(n-3) < \tau$$

The third case was treated for n = 3 by S. Mori and by S.Mori and J. Kollar.

At the moment we can extend to higher dimension the Francia's flip, i.e. the case where *X* has only points of index one and two.