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Quasi polarized pairs

MMP on q. p.v.

Marco Andreatta

Polarized variety

Let X be a projective variety with terminal and Q-factorial singularities
of dimension 7.

Let L be a Cartier divisor (a line bundle) which is ample, or simply nef
and big.

The pair (X, L) is called a polarized pair, or a quasi polarized pair.

For instance let X C P" be a projective variety and L := O(1)y,
or better its (partial) desingularizaton and the pull back of L.



Classical problems
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IR ) Problem Given a general element D € |L|
(assume that X is not a cone over D).

Which properties of D lift to X;
do these properties determine X ?

Enriques—Castelnuovo studied the case in which X is a surface and D is
a curve of low genus, or of minimal degree, ...

Sakai studied the case in which X is a normal surface.

Fano studied the case in which X is a 3-fold and D is a K3 surface.
Mori in his first paper proved that if D is a c.i. in a weighted projective
space the same is for X.

Sommese proved that abelian and bi-elliptic surfaces cannot be ample
sections, unless X is a cone.



Adjunction Theory
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Polarized variety

Adjunction Theory wants to classify quasi polarized pairs via the study
of the nefness of the adjont bundles

KX + I‘L,
with r natural (or rational) positive number.

Assume that there exist r sections of |L| which intersect in a n — r variety
D, with terminal singularities (r = n — 1, we ask for a smooth curve).
To get nefness of Ky + rL implies, by adjunction (Kx + rL)p = Kp,

to get a minimal model for D.



Minimal Model Program- BCHM
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A"-MMP

A log pair (X, A), i.e a normal variety X and an effective R divisor A, is
Kawamata log terminal (klt) if:

Kx + A is R-Cartier and for a (any) log resolution g : ¥ — X we have
g (Kx + A) = Ky + Xb,T; with b; < 1, for all i.

By BCHM on a kit log pair (X, A), with A big, we can run a
Kx + A- Minimal Model Program with scaling:
(X0, A0) = (X, A) = (X1, A1) = — — —— = (X, Ay)



Minimal Model Program- BCHM
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(X0,A0) = (X,A) = (X1, A1) = — — — = (X, A))
such that:

AT-MMP

1) (X;, A;) is a kIt log pair, fori = 0, ..., s;

2) ¢; : X; = X,y is a birational map which is either a divisorial
contraction or a flip associated with an extremal ray R; = R*[C;] such
that (Kxi + A,)C, <0

(notation: R; € NE(Xi)(KXi+Ai)<O - NE(Xi)KXi<0)

3) either Ky, + A, is nef (i.e. (X;, Ay) is a log Minimal Model),
or X; — Z is a Mori fiber space relatively to Ky, + A

(depending on the pseudeffectivity of Ky + A).



MMP for a q.p. pair
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Marco Andreatta Let (X, L) be a quasi-polarized variety: let r € Q.

Lemma (zip L into a boundary). Since L is nef and big there exists an
AT-MMP effective Q-divisor A" on X such that

rL ~g A" and (X,A") is Kawamata log terminal.

Run a Ky + A’-MMP and get a birational klt pair (X;, A}) which is
- either a Minimal Model (Kx, + A, is nef)
- or X; — Z is a Mori fiber space relatively to Ky, + A,.

Remarks/Problems
m (X, Al) is not necessarily an (r) q.p. pair, i.e. we do not have a
priori a nef and big Cartier divisor L, such that rL, ~g AL
m Beyond the existence of the MMP, it would be nice to have a
“description” of each steps and eventually of the Mori fiber spaces.



Extremal rays
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For the above program we study the (Fano-Mori) contractions:

p: X=Y

Extremal rays

associated to a rays R = R*[C] € NE(X) , 1 ,1)<0 C NE(X), -

That is o is a projective map between normal variety, with connected
fibers, X has terminal Q-factorial singularities and an irreducible curve
C C X is mapped to a point by ¢ iff [C] € R.

- ¢ can be of fiber type (dimX > dimY), ¢ is called a Mori fiber space
- or birational, ¢ can then be divisorial or small

Let F be a non trivial fiber of (; we possibly restrict to an affine
neighborhood of the image of F (local set up).
Then (Kx + 7L) ~, Ox for a rational 7 > r.



Apollonio method
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Extremal rays

Let X’ € |L| a generic divisor with ”good singularities”. We have:

- = ¢' : X' — Y’ is a contraction with connected fibre,
around F' := FNX';
itis the Fano-Mori contraction associate to R" € NE(X') x , 1 (,—1)1/)<o-

- Any section of L on X’ extends to a section of L on X.



Base point free technique
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Theorem [Fano, Fujita, Kawamata, Kollar, ...,
..., A-Wisniewski, Mella, A-Tasin]

Extremal rays

m dimF > (r — 1); if ¢ is birational then dimF > r.

mI[fdimF <r+1,ordimF < r+ 1if ¢ is birational, then L is very
ample (relatively to ).

m If dim F < r 4 2 then there exists X’ € |L| with ”good”
singularities (i.e. as in X). The same is true if dim F = r + 2,
except for two cases in which n = 3 and y is of fiber type.



Weighted Blow-up
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Let X = A" = SpecClxy, ..., %), Z={x1 =... =x =0} C X and
P(ay, ..., a) the weighted projective space with weight (ay, ..., a).

Consider the rational map

‘Weighted Blow-up

p: A" = Pay,...,a)

given by (x1,...,x,) — (x{" 1 ... x).

The weighted blow-up of X along Z with weight

o= (aiy,...,a0,...,0)is defined as the closure X in

A" x P(ay, . ..,ax) of the graph of ¢, together with the morphism

7 : X — X given by the projection on the first factor.

The map m is birational and contracts an exceptional irreducible divisor
E to Z. Moreover for any point z € Z we have 77 1(z) = P(ay, . . ., a).



Weighted Projective Space

MMP on q. p.v.

Marco Andreatta

For any d € N we define the o-weighted ideal of degree d as

‘Weighted Blow-up k
I,a={8€Clxi,..., x| : o-wt(g) > d} = (x)' ---x" : Zsjaj >d).

=1
The weighted blow-up of X = A" along Z = {x; = ... = x;, = 0} with

weight o = (ay,...,a,0,...,0), 7 : X — X, is given by

X = Proj @Ia,d - X.
d>0



Castelnuovo-Kawakita
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Theorem
Let ¢ : X — Y be a birational contraction associated with an extremal
ray R = RT[C] on a q.p. pair, such that L-C > 0 and

Castenors- R =R*[C] € NE(X) k4 (—2)1)<0 C NE(X) g, <o-

Kowalita (i.e.a birational map in a Ky + A"~2-MMP)

Then ¢ : X — Y is the weighted blow-up of a smooth point in ¥ of
weights (1,1,b, ....,b), where b is a natural positive number.

L' = p.(L) is a Cartier divisor on Y such that o*L’ = L + DE, where E
is the exceptional (Weil) divisor.

Definition
We call such ¢ a Castelnuovo-Kawakita contraction.
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We have dim F > (n — 2); thus dim F = (n — 1) and ¢ is a contraction
of a divisor to a point.
By the base point free theorem, we can assume L is very ample.

Castenuovo-

Kavakita Thus we get the existence of sections in |L| with terminal singularities.
Inductively, slicing with (n — 2) general sections of |L|, we can reduce to

the case of a Fano Mori contraction on a surface.

Surfaces with terminal singularities are smooth. Apply now

Castelnuovo’s Theorem to have that the image is smooth .

Since Y has terminal QQ-factorial singularities this implies that Y is
smooth at the exceptional point.
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Castenuovo-
Kawakita
contractions

Since X = Proj,, (Da>0 f« (Ox(—dbE)), we want to prove that

S|+ §p + stj > db).
=3

f+(Ox(—dbE) = (x}' - - - x3r

a) consider a general element X’ € |L|; the restricted morphism
f'i=fix : X' = Y' := f(X') is a divisorial Fano-Mori contraction of a

ray R" € NE(X') x, +(r—1)1)<0-

By the above step Y and Y’ are smooth; thus we can assume
Y ={x,=0}CY.

By induction

n—1

fo(Oxi (—dbE) = (' -+ -x(02]) | s1 4+ 52+ > bsj > db).
Jj=3
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Castenuovo-
Kawakita
contractions

b) Consider the exact sequence on X

0 — Ox(—X' — dbE) — Ox(—dbE) — Ox/(—dbE) — 0

Pushing it down via ¢ and using the Relative Kawamata-Viehweg
Vanishing we have

0 — f.Ox(—(d — 1)bE) 3 f,Ox(—dbE) — f.Ox/(—dbE) — 0.

The proposition follows by induction on n
(. (Ox(—dbE) = (x5 - X070 | 51 + 52+ S4=3 bsy > db)))
and on d

(f(Ox(=(d = 1)bE) = (x}' - -2y | s1+ 52+ 213 b5 =2 (d — 1))
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Consider a Ky + A™-MMP with r = (n — 1) (or > (n — 1)) and let
R; = RT[C}] be a birational ray in the sequence.

Inductively construct a nef and big Cartier divisor L; on X; such that
VLI' ~Q Afnil)l

1) L;C; = 0, otherwise, by the above Theorem, we have the
contradiction (n — 1) > dimF > r > (n — 1).

2) Let ; : X; — Y be the contraction associated with R;. We have a
Cartier divisor i, such that ¢*(L{, ;) = L;.

If ¢ is birational (X1, Liy1) == (Y, Li,,),

if pis small (Xip1, Liv1) == (X7, 0" (Li,,)), where o™ : X — Yis
the flip.



the zero reduction
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Proposition. Given a q.p. pair (X, L) it is possible to run a MMP which
contracts all extremal rays on which L is zero and obtain a q.p. pair
(X', L") which is birational equivalent to (X, L) and such that:

m either Ky + (n — 1)L’ is nef
m or (X', L') is a Mori space relative to Kx» + (n — 1)L’ and L' is a
(relatively) very ample Cartier divisor.

Definition. (X', L") is called a zero reduction of (X, L).

By very classical results in the second case the q.p. pair (X’,L’) isina
obvious finite list of examples: (P*, O(1)), (Q, O(1)), scrolls, del Pezzo.



Applications
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Let (X, L) be a quasi-polarized variety and g(X, L) be its sectional
genus: 2g(X,L) —2 = (Kx+ (n—1)L)'L"...'L).

(if L is spanned it is the genus of a curve intersection of 1 — 1 general elements in |L|.

- Classification of pairs g(X, L) < 0 (Kx + (n — 1)L is not nef (therefore
not pseudoeffective) and the zero reduction of (X, L) is among the above
pairs

- Classification of pairs with g(X,L) = 1.

- Classification of pairs of minimal degree
(e L"=h'(X,L) — n).



First Reduction
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Proposition-Part 1. Let (X, L) be a q.p. pair. There exists a q.p. pair
(X", L") which is a (Ky 4+ A"~2)-MM and which can be obtained with
the following procedure:

m Take a zero reduction (X', L’).

m Contract, step by step, all Castelnuovo-Kawakita type extremal
rays, such that LiE = —bEp ¢ : X' = X".

mLetl’ :=¢.L.

Definition The pair (X", L") is called a First Reduction of the pair
(X, L).



First Reduction
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Proposition-Part 2. Let (X, L) be a q.p. pair and let (X", L") be its First
Reduction. Then
m ecither Kx» + (n — 2)L" is nef
m or X" — Z is a Mori fiber space relatively to Kx» + (n — 2)L"” and
L" is (relatively) very ample with one exception (del Pezzo

) manifold). In all cases there exists a divisor in |L”| with good
Ky + a(1=2). . ..
MvP singularities.

Remark. The classification of the pairs in the second part, thank to the
existence of a good section, is classical and reduces to the theory of
algebraic surfaces. (Quadric fibration, del Pezzo manifolds, ....)



Applications
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Theorem. Let Y C PV be a non degenerate projective variety of
dimension n > 3 of degree d and let L := O(1)}y. Assume that
d < 2codimpn (X) + 2.

Then on a desingularization (X, L) the divisor Kx + (n — 2)L is not
pseudoeffective.

Therefore (Y, O(1)) is equivalent, via birational equivalence and
first-reduction, to a q.p. pair (X", L") in the above Remark.
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Marco Andreatta Let ¢ : X — Y be a birational contraction associated with an extremal
ray R = R™[C] on a q.p. pair, such that L-C > 0 and
(n=3)<7<(n—-2).

(These are the birational maps in a Kx + A"3-MMP).

We have the following possibilities for ¢.

H o contracts a divisor to a curve (it is a special case of the next
theorem),

( contracts a divisor to a point,

-3 <7< © is a small contraction with exc. locus of dimension (n — 2).

(n—2)

In all cases we can apply the “’base point free technique”, find therefore
a section X’ € |L| and, by induction if possible, reduce to the case n = 3
where we have a complete classification.

Then we like to "lift” this classification and the examples to higher
dimension.



Divisorial contractions with small fibers
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Theorem. Let f : X — Z be a divisorial contraction associated to an
extremal ray R in NE(X) g, | ) <(» Where r € N, such that L:C > 0.
Let E be the exceptional locus of f and set C := f(E) C Z.

Assume that all fibres have dimension less or equal to r + 1.

EH Then there is a closed subset S C Z of codimension al least 3 such
that Z' = Z\S and C' = C\S are smooth, codimz C' = r + 2 and
f X' =X\f1(S) — Z is a weighted blow-up along C’ with
weighto = (1,1,b...,b,0,...,0), where the number of b’s is r.

Let 7' be a o-weighted ideal sheaf of degree b for Z' C X’ and let
i : Z' — Z be the inclusion; let also Z := i,.(Z') and Z( be the
m-th symbolic power of Z. Then X = Proj €,,~., Z™.

n—-3)<7<

(n—2)




Kawakita Contractions
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The second case was treated for n = 3 in a series of paper by Kawakita.

We would like to extend Kawakita classification and show that ¢ is a
weighted blow-up of a (possible singular) point.

We are trying to use Cox Rings of weighted blow-ups:

- they determine completely the blow-up,

P - there are some new general results on the relation between the Cox
) Ring of a variety and of an ample section.



Small Contractions
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The third case was treated for n = 3 by S. Mori and by S.Mori and J.
Kollar.

At the moment we can extend to higher dimension the Francia’s flip, i.e.
the case where X has only points of index one and two.

n—-3)<7<
(=)
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