



# Holomorphic Symplectic Manifolds

Marco Andreatta joint project with J. Wiśniewski

Dipartimento di Matematica

Universitá di Trento





An holomorphic symplectic manifold Xis a kähler manifold X with a holomorphic non degenerate closed form  $\sigma \in H^0(X, \Omega_X^2)$ An irreducible holomorphic symplectic manifold Xis compact and  $H^0(X, \Omega_X^*) = \mathbb{C}[\sigma]$ (eq. X is simply connected and  $< \sigma >= H^0(X, \Omega_X^2)$ ).





An holomorphic symplectic manifold Xis a kähler manifold X with a holomorphic non degenerate closed form  $\sigma \in H^0(X, \Omega_X^2)$ An irreducible holomorphic symplectic manifold Xis compact and  $H^0(X, \Omega_X^*) = \mathbb{C}[\sigma]$ (eq. X is simply connected and  $< \sigma >= H^0(X, \Omega_X^2)$ ). Calabi-Yau : projective mfds with  $H^0(X, \Omega_X^*) = \mathbb{C} + \mathbb{C}\omega$ ,

where  $\omega$  is a generator for  $K_X$ .

Definitions



An holomorphic symplectic manifold Xis a kähler manifold X with a holomorphic non degenerate closed form  $\sigma \in H^0(X, \Omega_X^2)$ An irreducible holomorphic symplectic manifold Xis compact and  $H^0(X, \Omega_X^*) = \mathbb{C}[\sigma]$ (eq. X is simply connected and  $< \sigma >= H^0(X, \Omega_X^2)$ ). Calabi-Yau : projective mfds with  $H^0(X, \Omega_X^*) = \mathbb{C} + \mathbb{C}\omega$ , where  $\omega$  is a generator for  $K_X$ . Complex Tori :  $\mathbb{C}^n/\Gamma$ ,  $\Gamma < \mathbb{C}^n$  a discrete subgroup.

Definitions



An holomorphic symplectic manifold Xis a kähler manifold X with a holomorphic non degenerate closed form  $\sigma \in H^0(X, \Omega^2_X)$ An irreducible holomorphic symplectic manifold X is compact and  $H^0(X, \Omega^*_X) = \mathbb{C}[\sigma]$ (eq. X is simply connected and  $<\sigma>=H^0(X,\Omega_X^2)$ ). Calabi-Yau : projective mfds with  $H^0(X, \Omega^*_X) = \mathbb{C} + \mathbb{C}\omega$ , where  $\omega$  is a generator for  $K_X$ . Complex Tori :  $\mathbb{C}^n/\Gamma$ ,  $\Gamma < \mathbb{C}^n$  a discrete subgroup.

Theorem (Bogomolov). Z kähler manifold with  $c_1(Z) = 0$ . Up to an etale cover  $Z' \simeq$  Tori x Calabi-Yau x Irr. Sympl.



Following Kummer, Fujiki, Beauville, we take

Data:

\*) A a complex torus of dimension d

\*)  $G < GL(r.\mathbb{Z})$  an irreducible representation of a finite subgroup; if d is odd we assume  $G < SL(r.\mathbb{Z})$ .



Following Kummer, Fujiki, Beauville, we take

Data:

\*) A a complex torus of dimension d

\*)  $G < GL(r.\mathbb{Z})$  an irreducible representation of a finite subgroup; if d is odd we assume  $G < SL(r.\mathbb{Z})$ .

### Construction:

i) Consider the action of G on  $A^r$  and take the quotient variety  $Y := A^r/G$ .

ii) Take a crepant resolution  $\pi: X \to Y$ .



Following Kummer, Fujiki, Beauville, we take

Data:

\*) A a complex torus of dimension d

\*)  $G < GL(r.\mathbb{Z})$  an irreducible representation of a finite subgroup; if d is odd we assume  $G < SL(r.\mathbb{Z})$ .

### Construction:

i) Consider the action of G on  $A^r$  and take the quotient variety  $Y := A^r/G$ .

ii) Take a crepant resolution  $\pi: X \to Y$ .

**Remark: Crepant resolution means**  $K_X \simeq \pi^* K_Y$ . It is hard to find!!!



Following Kummer, Fujiki, Beauville, we take

Data:

\*) A a complex torus of dimension d

\*)  $G < GL(r.\mathbb{Z})$  an irreducible representation of a finite subgroup; if d is odd we assume  $G < SL(r.\mathbb{Z})$ .

### Construction:

i) Consider the action of G on  $A^r$  and take the quotient variety  $Y := A^r/G$ .

ii) Take a crepant resolution  $\pi: X \to Y$ .

**Remark: Crepant resolution** means  $K_X \simeq \pi^* K_Y$ . It is hard to find!!!

Final Output: A manifold with  $K_X \simeq \mathcal{O}_X$  and  $H^1(X, \mathbb{C}) = \mathbb{C}$ , i.e. Calabi-Yau or Symplectic.







More specifically one can check

\*) Finite subgroups of  $SL(2,\mathbb{Z})$  acting on  $A^2 = (\mathbb{C}/\Gamma)^2$ . The quotient has rational double points, so there exist crepant resolution, we get Kummer surfaces (K3).







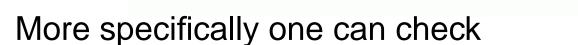
More specifically one can check

\*) Finite subgroups of  $SL(2,\mathbb{Z})$  acting on  $A^2 = (\mathbb{C}/\Gamma)^2$ . The quotient has rational double points, so there exist crepant resolution, we get Kummer surfaces (K3).

\*) Finite subgroups of  $SL(3,\mathbb{Z})$  acting on  $A^3 = (\mathbb{C}/\Gamma)^3$ . There exist crepant resolutions (Roan and others), we get Calabi-Yau 3-folds.







\*) Finite subgroups of  $SL(2,\mathbb{Z})$  acting on  $A^2 = (\mathbb{C}/\Gamma)^2$ . The quotient has rational double points, so there exist crepant resolution, we get Kummer surfaces (K3).

\*) Finite subgroups of  $SL(3, \mathbb{Z})$  acting on  $A^3 = (\mathbb{C}/\Gamma)^3$ . There exist crepant resolutions (Roan and others), we get Calabi-Yau 3-folds.

\*) Finite subgroups of  $Sp(2n, \mathbb{C})$  acting on  $A^n = (\mathbb{C}^2/\Gamma)^n$ . due to Fujiki-Beauville.

Together with two sporadic examples of O' Grady they are the only examples of Irreducible Symplectic mfds.





Consider a local symplectic contractions  $\pi: X \to Y$  where

- $\circ$  X is a symplectic manifold
- $\circ$  Y is an affine normal variety,
- 6  $\pi$  is a birational projective morphism with connected fibers.



Consider a local symplectic contractions  $\pi: X \to Y$  where

- $\mathbf{6}$  X is a symplectic manifold
- $\mathbf{6}$  Y is an affine normal variety,
- 6  $\pi$  is a birational projective morphism with connected fibers.

In dimension 2 symplectic contractions are classical and they are minimal resolutions of Du Val singularities  $\mathbb{A}_n$ ,  $\mathbb{D}_n$ ,  $\mathbb{E}_6$ ,  $\mathbb{E}_7$ ,  $\mathbb{E}_8$ . They are quotients of type  $\mathbb{C}^2/H$  with  $H < SL(2,\mathbb{C})$  a finite group.





For example take  $G < Sp(2n, \mathbb{C})$ , i.e. *G* preserves a symplectic form  $\sigma$ .

For any resolution  $\pi : X \to \mathbb{C}^{2n}/G$  the form  $\pi^*(\sigma)$  extends to a holomorphic two form on X (Beauville).

If it is non degenerate everywhere then  $\pi$  is a symplectic resolution (a symplectic contraction). This is equivalent to be crepant.





For example take  $G < Sp(2n, \mathbb{C})$ , i.e. *G* preserves a symplectic form  $\sigma$ .

For any resolution  $\pi : X \to \mathbb{C}^{2n}/G$  the form  $\pi^*(\sigma)$  extends to a holomorphic two form on X (Beauville).

If it is non degenerate everywhere then  $\pi$  is a symplectic resolution (a symplectic contraction). This is equivalent to be crepant.

Problem: describe  $G < Sp(2n, \mathbb{C})$  which admit a symplectic resolution (even for n = 2).



Let S be a smooth surface. Then

$$Hilb^n(S) := S^{[n]}S \to (S)^n / \sigma_n := S^n(S)$$

is a crepant resolution; it is the blow-up of the diagonal



Take  $H < SL(2, \mathbb{C})$  and let  $S \to \mathbb{C}^2/H$  be the minimal desingularization (symplectic contraction).

Consider the composition

$$S^{[n]}S \to S^n(S) \to S^n(\mathbb{C}^2/H)$$

it is a crepant map.

It is the symplectic resolution of  $S^n(\mathbb{C}^2/H) = \mathbb{C}^{2n}/G$  where  $G = (H)^n \rtimes \sigma_n < Sp(2n)$ .

This is the local  $Hilb^n$  case of Beauville and Fujiki.







Consider the composition  $S^{[n+1]}(\mathbb{C}^2) \to S^{n+1}(\mathbb{C}^2) \to \mathbb{C}^2$ , where the last is  $\tau : (a_1, ..., a_{n+1}), (b_1, ..., b_{n+1}) \to (\Sigma a_i, \Sigma b_i)$ .

The restriction  $X := \pi^{-1}(0,0) \rightarrow \tau^{-1}(0,0)$  is a crepant map.

It is the symplectic resolution of  $\tau^{-1}(0,0) = \mathbb{C}^{2n}/G$  where  $G = \sigma_{n+1} < Sp(2n)$ .

This is the local  $Kum^n$  case of Beauville and Fujiki.



Symplectic resolution for  $\mathbb{C}^n \oplus \mathbb{C}^{n*}$ 



Let  $G < GL(n, \mathbb{C})$  a finite subgroup. G can be viewed as a subgroup  $G < Sp(\mathbb{C}^n \oplus \mathbb{C}^{n*}) = Sp(\mathbb{C}^{2n})$  (the symplectic form preserved is the identity in  $\mathbb{C}^n \oplus \mathbb{C}^{n*}$ .



Symplectic resolution for  $\mathbb{C}^n \oplus \mathbb{C}^{n*}$ 

Let  $G < GL(n, \mathbb{C})$  a finite subgroup. G can be viewed as a subgroup  $G < Sp(\mathbb{C}^n \oplus \mathbb{C}^{n*}) = Sp(\mathbb{C}^{2n})$  (the symplectic form preserved is the identity in  $\mathbb{C}^n \oplus \mathbb{C}^{n*}$ .

Theorem. (Bellamy) Let  $G < GL(n, \mathbb{C})$ ; a symplectic resolution of  $\mathbb{C}^{2n}/G$  exists iff G is one of the two groups above or G is the binary tetrahedral group,  $BT = Q \rtimes \mathbb{Z}_3$ , acting on  $\mathbb{C}^4 = C^2 \oplus C^{2*}$ .



Let  $G < GL(n, \mathbb{C})$  a finite subgroup. G can be viewed as a subgroup  $G < Sp(\mathbb{C}^n \oplus \mathbb{C}^{n*}) = Sp(\mathbb{C}^{2n})$  (the symplectic form preserved is the identity in  $\mathbb{C}^n \oplus \mathbb{C}^{n*}$ .

Theorem. (Bellamy) Let  $G < GL(n, \mathbb{C})$ ; a symplectic resolution of  $\mathbb{C}^{2n}/G$  exists iff G is one of the two groups above or G is the binary tetrahedral group,  $BT = Q \rtimes \mathbb{Z}_3$ , acting on  $\mathbb{C}^4 = C^2 \oplus C^{2*}$ .

**Remark.** a)Lehn-Sorger described explicitly a local symplectic resolution for  $\mathbb{C}^4/BT$ .

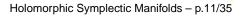
b) Kummer construction applies for the first two but it does NOT apply for BT (i.e. there is no global symplectic resolution) (– ,Wisniewski).







**Remarks:** *Y* has rational singularities,  $K_Y$  is trivial and  $\pi$  is crepant. All exceptional fibres are uniruled.







**Remarks:** *Y* has rational singularities,  $K_Y$  is trivial and  $\pi$  is crepant. All exceptional fibres are uniruled.

**Theorem** (Wierzba - Namikawa)  $\pi$  is semismall, i.e. for every  $Y \subset X$ 

 $2codim(F) \ge codim(\pi(F)).$ 

If equality holds then F is called a maximal cycle.





**Remarks:** *Y* has rational singularities,  $K_Y$  is trivial and  $\pi$  is crepant. All exceptional fibres are uniruled.

Theorem (Wierzba - Namikawa)  $\pi$  is semismall, i.e. for every  $Y \subset X$ 

## $2codim(F) \ge codim(\pi(F)).$

If equality holds then F is called a maximal cycle.

Theorem (Z. Ran- Wierzba) Let  $f : \mathbb{P}^1 \to X$  be a non constant map whose image is a  $\pi$  exceptional curve. Then f deforms in a family (Hilb) of dimension at least dimX + 1.







Let G < Sp(V) and for  $g \in G : age(g) = 1/2codim(V)^g$ .

Theorem (Batyrev-Kaledin- ...).

Assume there exists a symplectic resolution  $\pi : X \to V/G$ , then:

 $dim H_{2i}(X, \mathbb{Q}) = \sharp \{ \text{conj. classes of el. of } G \text{ of } age = i \};$ 

odd homology is zero.







Let G < Sp(V) and for  $g \in G : age(g) = 1/2codim(V)^g$ .

Theorem (Batyrev-Kaledin- ...).

Assume there exists a symplectic resolution  $\pi : X \to V/G$ , then:

 $dim H_{2i}(X, \mathbb{Q}) = \sharp \{ \text{conj. classes of el. of } G \text{ of } age = i \};$ odd homology is zero.

Moreover there exists a base of  $H_{2i}(X,\mathbb{Q})$  given by maximal cycles which are counter-image of  $(V)^g$  with  $codimV^g=i$  .



4-dimensional case

From now on we restrict to the case dim X = 4.

By semi-smallness  $Exc(\pi)$  consists (possibly) of

- 6  $D_j$  exceptional divisors mapping to surfaces  $\pi(D_j) := S_i \subset Y$
- 6  $T_k$  two dimensional special fibers  $\pi(T_k) = pt := 0 \in Y$ .

### Remark. (Wierzba)

The general fiber F is a tree of rational curves.

Components of a general fiber are called essential curves; if two stay in the same component  $D_j$  they are deforation equivalent.

The normalization of a two dimensional fiber is a rational surface.



## Small contractions

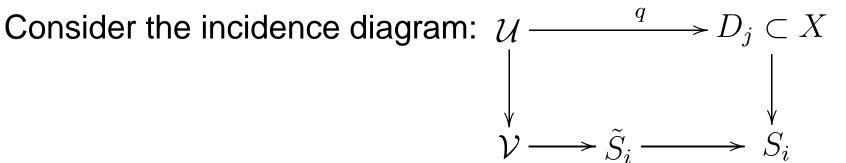


Theorem (Wierzba-Wisniewski, Cho-Myiaoka- Sheperd Barron). If  $\pi$  is small (i.e.  $D_j = \emptyset$ ) then the  $T_i$  are a finite numbers of disjoint  $\mathbb{P}^2$  with normal bundle  $T^*\mathbb{P}^2$ . (Mukai flop)





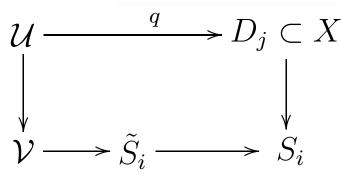
Let  $C \subset \pi^{-1}(s), s \in S_i \setminus \{=0\}$  be an essential curve and  $\mathcal{V} \subset Chow(X/Y)$  an irreducible component, i.e. a Chow family of rational curve, containing it and such that the map  $\mathcal{V} \to \tilde{S}_i \to S_i$  is dominant.



where  $\tilde{S}_i$  is the normalization.







Proposition (Wierzba, Conde-Wisniewski, — - Wisniewski)  $\mathcal{V}$  is smooth and it has a holomorphic closed two form non degenerate (possibly) outside some (-1)-curves. In particular  $\tilde{S}_i$  has at most a double point singularity at 0 and  $\mathcal{V}$  is a not necessarily minimal desingularization of  $\tilde{S}_i$ . q is not of maximal rank on the locus over the (-1)-curve.



fixed components.



Let  $\pi : X \to Y$  be a projective morphism of normal varieties with connected fibers and Y = SpecA. By  $\mathcal{N}ef(X/Y) \subset N^1(X/Y)$  we understand the closure of the cone spanned by the classes of relatively-ample bundles By  $\mathcal{M}ov(X/Y) \subset N^1(X/Y)$  we understand the cone spanned by the classes of linear systems which have no

Holomorphic Symplectic Manifolds – p.17/35





Assume that X is Q-factorial and Pic(X/Y) is a lattice (finitely generated abelian group with no torsion); let  $N^1(X/Y) = Pic(X/Y) \otimes \mathbb{Q}$ . We say that X is a Mori Dream Space (MDS) over Y if:

- 1.  $\mathcal{N}ef(X/Y)$  is the affine hull of finitely many semi-ample line bundles:
- 2. there is a finite collection of small Q-factorial modifications (SQM) over  $Y, f_i : X \to X_i$  such that  $X_i \to Y$  satisfies the above assumptions and  $\mathcal{M}ov(X/Y)$  is the union of the strict transforms  $f_i^*(\mathcal{N}ef(X_i)).$  $X_i$  are called the SQM models.

More on MDS





Note that a version of the theorems of Hu-Keel works in the relative situation too.

In particular, the relative Cox ring, Cox(X/Y), is a well

defined, finitely generated, graded module

$$\bigoplus_{L \in Pic(X/Y)} \Gamma(X, L).$$

Moreover X is a GIT quotient of  $Spec(\bigoplus_{L \in Pic(X/Y)} \Gamma(X, L))$ 

under the Picard torus  $Pic(Y|X) \otimes \mathbb{C}^*$  action.



Symplectic contractions are MDS



Theorem. Let  $\pi : X \to Y$  be a 4-dimensional local symplectic contraction.

Then X is a Mori Dream Space over Y.

Moreover any SQM model of X over Y is smooth and any two of them are connected by a finite sequence of Mukai flops.

In particular, there are only finitely many non isomorphic (local) symplectic resolution of Y.



Symplectic contractions are MDS



Theorem. Let  $\pi : X \to Y$  be a 4-dimensional local symplectic contraction.

Then X is a Mori Dream Space over Y.

Moreover any SQM model of X over Y is smooth and any two of them are connected by a finite sequence of Mukai flops.

In particular, there are only finitely many non isomorphic (local) symplectic resolution of Y.

## Proof

- 6 Cone theorem holds (Mori, Kawamata)
- 6 Base point free theorem (Kawamata, Shokurov)
- 6 Existence of flops (Wierzba-Wisniewski)
- 6 Termination (Matsuki).





 $N_1(X/Y)$  denotes the vector space of 1-cycles proper over Y. We define  $\mathcal{E}ss(X/Y)$  as the convex cone spanned by the classes of curves which are not contained in  $\pi^{-1}(0)$ Theorem (— -Wisniewski, Altmann-Wisniewski)  $\mathcal{M}ov(X/Y) = \langle \mathcal{E}ss(X/Y) \rangle^{\vee}$ . In particular the cone  $\mathcal{M}ov(X/Y)$  is symplicial.



 $N_1(X/Y)$  denotes the vector space of 1-cycles proper over Y. We define  $\mathcal{E}ss(X/Y)$  as the convex cone spanned by the classes of curves which are not contained in  $\pi^{-1}(0)$ 

Theorem (— -Wisniewski, Altmann-Wisniewski)  $\mathcal{M}ov(X/Y) = \langle \mathcal{E}ss(X/Y) \rangle^{\vee}.$ 

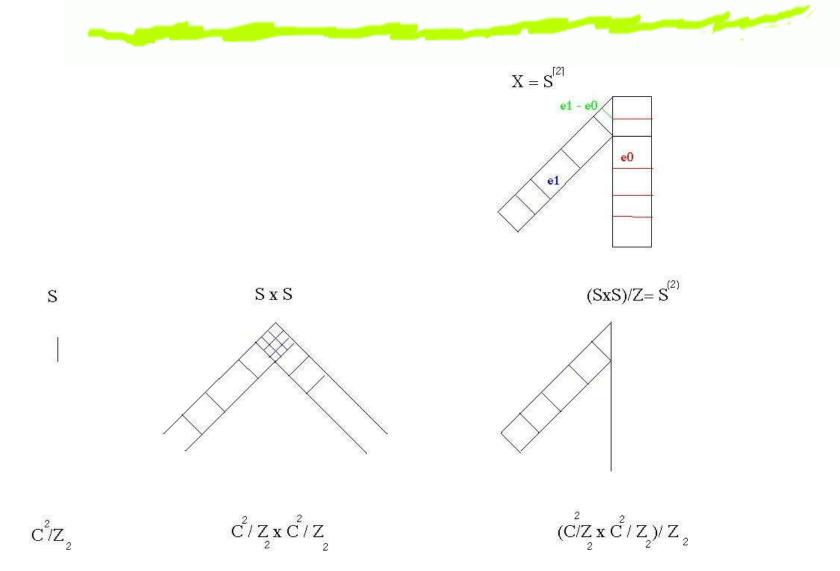
In particular the cone Mov(X/Y) is symplicial.

Theorem The subdivision of Mov(X/Y) into the subcones  $Nef(X_i/Y)$  is done by hyperplanes, corresponding to small contractions.

(that is the internal walls are of the type  $C \cap Mov(X/Y)$ where C is an hyperplane in  $N^1(X/Y)$ ).

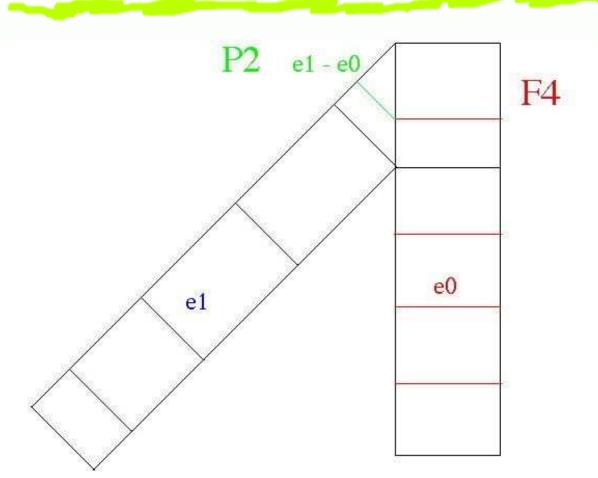






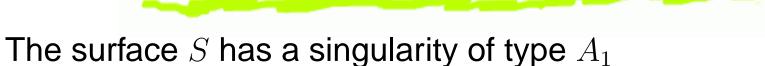


## Semi direct product



The resolution  $X \to \mathbb{C}^4/(\mathbb{Z}_2)^2 \rtimes \mathbb{Z}_2$  contains: a reducible divisor  $D = D_0 \cup D_1$ , the fiber over 0 which is  $F_4 \cup \mathbb{P}^2$ .





 $\mathcal{V}_0$  is the minimal resolution, the curve in  $\mathcal{U}_0$  over the -2 correspond to curves in  $F_4$ .

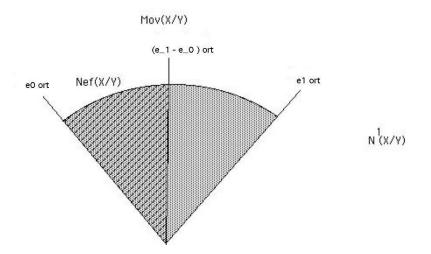
 $\mathcal{V}_1$  is also the minimal resolution and the curve in  $\mathcal{U}_1$  over the -2 correspond to the splitting curves in  $F_4 \cup \mathbb{P}^2$ .



#### Semi direct product: MDS



# $Pic(X/Y) = \mathbb{Z}^2$ = and $NE(X/Y) = \langle e_0, e_1 - e_0 \rangle$ , where $e_1 - e_0$ is a line in $\mathbb{P}^2$ .

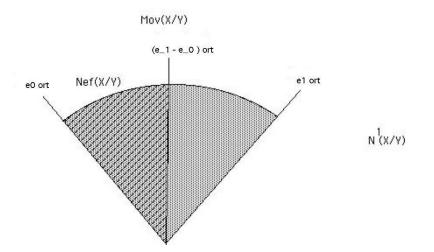




#### Semi direct product: MDS



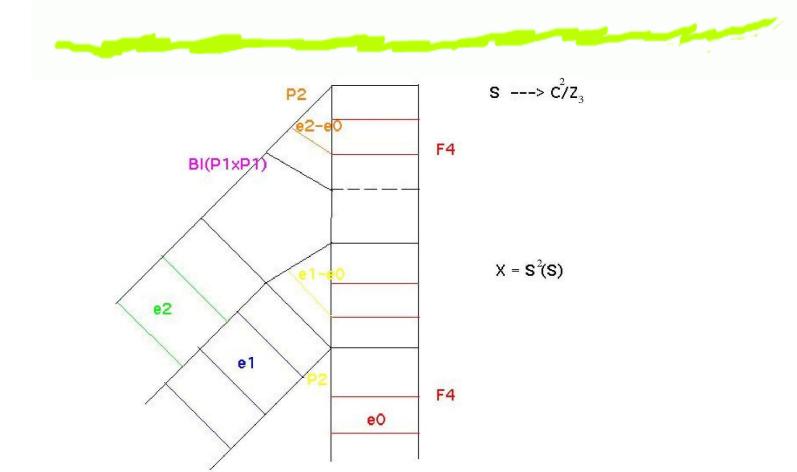
# $Pic(X/Y) = \mathbb{Z}^2$ = and $NE(X/Y) = \langle e_0, e_1 - e_0 \rangle$ , where $e_1 - e_0$ is a line in $\mathbb{P}^2$ .



There are two symplectic resolution of  $\mathbb{C}^4/(\mathbb{Z}_2)^2 \rtimes \mathbb{Z}_2$ . They are symmetric and the flop passes from one to the other.

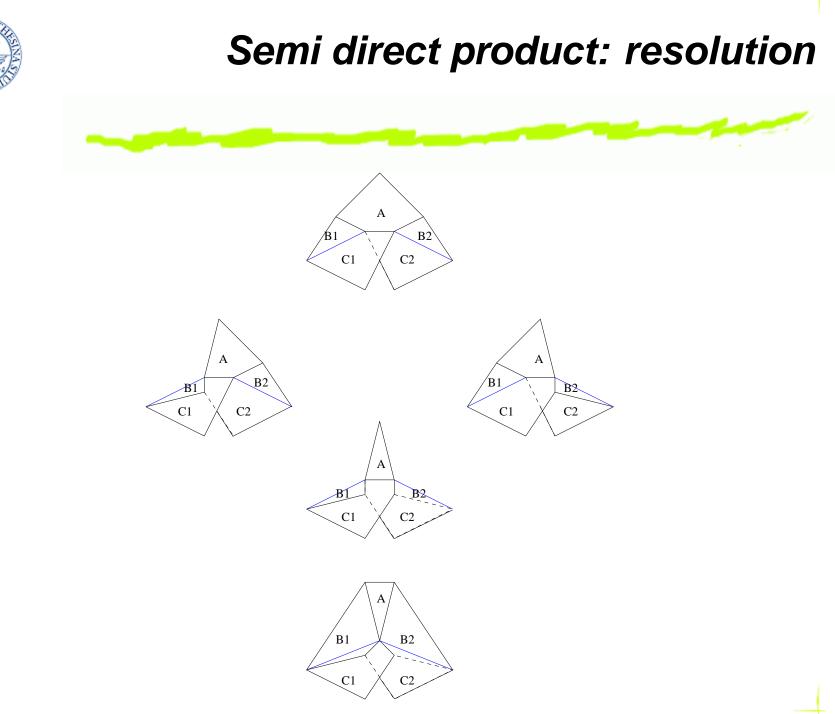
#### Semi direct product: resolution

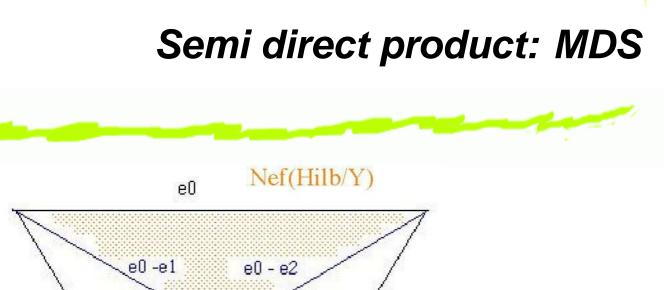




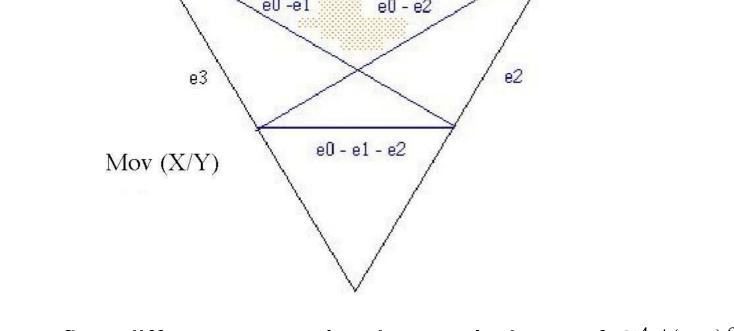
The resolution  $X \to \mathbb{C}^4/BT$  contains: a reducible divisor  $D = D_1 \cup D_2$ ,

the fiber over 0 which is  $F_4 \cup F_4 \cup Bl_p(\mathbb{P}^1 \times \mathbb{P}^1) \cup \mathbb{P}^2 \cup \mathbb{P}^2$ .









There are five different symplectic resolutions of  $\mathbb{C}^4/(\mathbb{Z}_3)^2 \rtimes$ 

*Movable cone for*  $(\mathbb{Z}_n)^2 \rtimes \mathbb{Z}_2$ 



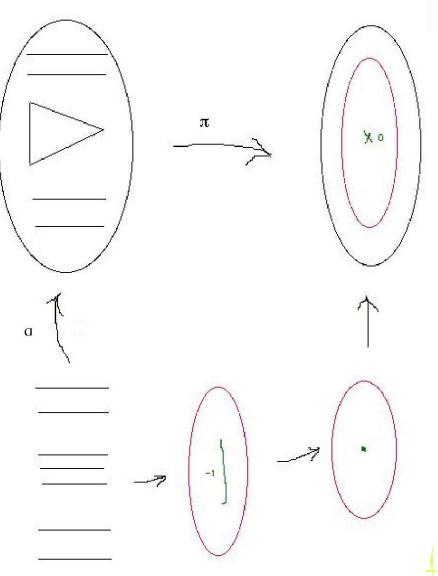
Theorem Let  $X \to \mathbb{C}^4/(\mathbb{Z}_n)^2 \rtimes \mathbb{Z}_2$  a symplectic resolution. The exceptional locus consists of n divisor,  $D_0, D_1, ..., D_{n-1}$ , and (n+2)(n-1)/2 two dimensional fibers. Let  $e_i$  be an essential curve in  $D_i$ . Then  $Mov(X/Y) = \langle e_0, e_1, ..., e_{n-1} \rangle \vee$ . The division of Mov(X/Y) into Mori chambers is defined by hyperplanes  $\lambda_{ij}^{\perp}$  for  $1 \leq i \leq j \leq n$  where  $\lambda_{ij} = e_0 - (e_i + ... + e_j)$ .

To each chamber it corresponds a symplectic resolution; they give all the symplectic resolutions.

 $\sigma_3$  example

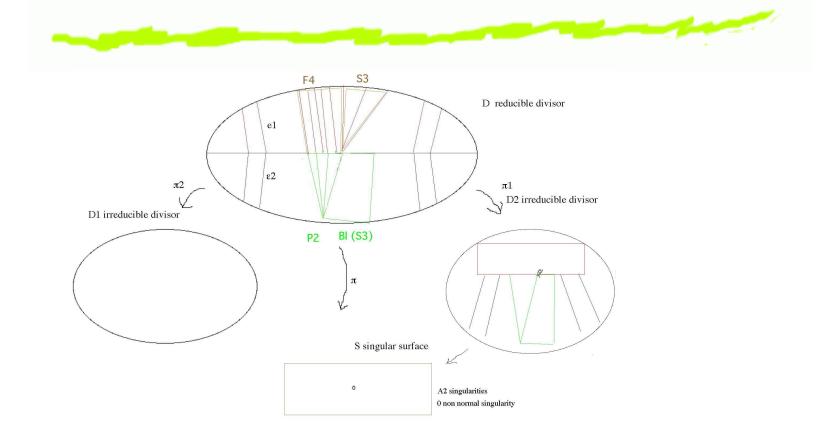


The resolution  $X \to \mathbb{C}^4 / \sigma_3$ contains an irr. divisor Da fiber over 0 equal to  $S_3$ . The surface  $\tilde{S}$  is smooth,  $\mathcal{V}$  is the blow-up of a point, the curves in  $\mathcal{U}$  over the -1correspond to lines in  $S_3$ .  $Pic(X/Y) = \mathbb{Z}$ and this is the unique symplectic resolution of  $\mathbb{C}^4/\sigma_3$ .





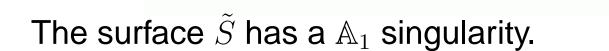
### **Binary tetrahedral**



The resolution  $X \to \mathbb{C}^4/BT$  contains: a reducible divisor  $D = D_1 \cup D_2$ , the fiber over 0 which is  $S_3 \cup F_4 \cup Bl_p(S_3) \cup \mathbb{P}^2$ .  $\pi_1$  contracts  $D_1$  as above,  $\pi_2$  is the small contraction of  $\mathbb{P}^2$ .







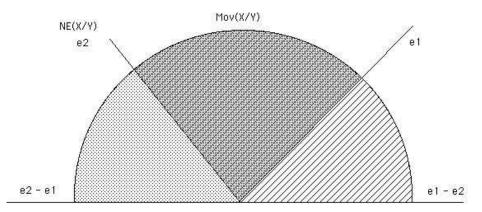
 $\mathcal{V}_1$  and  $\mathcal{V}_2$  are both non minimal resolution of this singularities. In each case the fiber contains two rational curves meeting transversally: a (-1) curve, corresponding to curves in  $S_3$  respectively  $Bl_p(S_3)$ , and a (-3)-curve.



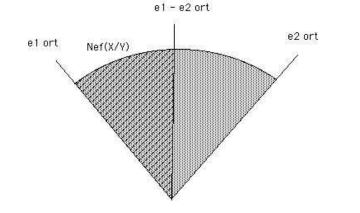
**Binary tetrahedral: MDS** 



# $Pic(X/Y) = \mathbb{Z}^2$ = and $NE(X/Y) = \langle e_1, e_2 - e_1 \rangle$ , where $e_2 - e_1$ is a line in $\mathbb{P}^2$ .



N (X/Y) 1



Mov(X/Y)

N(X/Y)



### **Binary tetrahedral: resolutions**



There are two symplectic resolution of  $\mathbb{C}^4/BT$ . They are symmetric and the flop passes from one to the other.



Conjecture Let  $\pi : X \to Y$  be a local symplectic contraction on a smooth projective manifold of dimension 4. Assume that it is elementary, i.e. that  $Pic(X/Y) \simeq \mathbb{Z}$ . Then it is one of the following:

- 6 the small contraction.
- 6 the symplectic resolution of  $\mathbb{C}^4/\sigma_3$
- 6 the symplectic resolution of  $\mathbb{C}^4/\mathbb{Z}_2$ .