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Definitions

An holomorphic symplectic manifold X
is a kähler manifold X with a holomorphic non degenerate
closed form σ ∈ H0(X,Ω2

X)
An irreducible holomorphic symplectic manifold X
is compact and H0(X,Ω∗

X) = C[σ]
(eq. X is simply connected and < σ >= H0(X,Ω2

X)).
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Definitions

An holomorphic symplectic manifold X
is a kähler manifold X with a holomorphic non degenerate
closed form σ ∈ H0(X,Ω2

X)
An irreducible holomorphic symplectic manifold X
is compact and H0(X,Ω∗

X) = C[σ]
(eq. X is simply connected and < σ >= H0(X,Ω2

X)).

Calabi-Yau : projective mfds with H0(X,Ω∗
X) = C+ Cω,

where ω is a generator for KX .
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Definitions

An holomorphic symplectic manifold X
is a kähler manifold X with a holomorphic non degenerate
closed form σ ∈ H0(X,Ω2

X)
An irreducible holomorphic symplectic manifold X
is compact and H0(X,Ω∗

X) = C[σ]
(eq. X is simply connected and < σ >= H0(X,Ω2

X)).

Calabi-Yau : projective mfds with H0(X,Ω∗
X) = C+ Cω,

where ω is a generator for KX .
Complex Tori : Cn/Γ, Γ < Cn a discrete subgroup.
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Definitions

An holomorphic symplectic manifold X
is a kähler manifold X with a holomorphic non degenerate
closed form σ ∈ H0(X,Ω2

X)
An irreducible holomorphic symplectic manifold X
is compact and H0(X,Ω∗

X) = C[σ]
(eq. X is simply connected and < σ >= H0(X,Ω2

X)).

Calabi-Yau : projective mfds with H0(X,Ω∗
X) = C+ Cω,

where ω is a generator for KX .
Complex Tori : Cn/Γ, Γ < Cn a discrete subgroup.

Theorem (Bogomolov). Z kähler manifold with c1(Z) = 0.
Up to an etale cover Z ′ ≃ Tori x Calabi-Yau x Irr. Sympl.
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Kummer construction

Following Kummer, Fujiki, Beauville, we take
Data:
*) A a complex torus of dimension d
*) G < GL(r.Z) an irreducible representation of a finite
subgroup; if d is odd we assume G < SL(r.Z).
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Kummer construction

Following Kummer, Fujiki, Beauville, we take
Data:
*) A a complex torus of dimension d
*) G < GL(r.Z) an irreducible representation of a finite
subgroup; if d is odd we assume G < SL(r.Z).
Construction:
i) Consider the action of G on Ar and take the quotient
variety Y := Ar/G.
ii) Take a crepant resolution π : X → Y .
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Kummer construction

Following Kummer, Fujiki, Beauville, we take
Data:
*) A a complex torus of dimension d
*) G < GL(r.Z) an irreducible representation of a finite
subgroup; if d is odd we assume G < SL(r.Z).
Construction:
i) Consider the action of G on Ar and take the quotient
variety Y := Ar/G.
ii) Take a crepant resolution π : X → Y .
Remark: Crepant resolution means KX ≃ π∗KY .
It is hard to find!!!
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Kummer construction

Following Kummer, Fujiki, Beauville, we take
Data:
*) A a complex torus of dimension d
*) G < GL(r.Z) an irreducible representation of a finite
subgroup; if d is odd we assume G < SL(r.Z).
Construction:
i) Consider the action of G on Ar and take the quotient
variety Y := Ar/G.
ii) Take a crepant resolution π : X → Y .
Remark: Crepant resolution means KX ≃ π∗KY .
It is hard to find!!!
Final Output: A manifold with KX ≃ OX and H1(X,C) = C,
i.e. Calabi-Yau or Symplectic.
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Examples

More specifically one can check

*) Finite subgroups of SL(2,Z) acting on A2 = (C/Γ)2.
The quotient has rational double points, so there exist
crepant resolution, we get Kummer surfaces (K3).
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Examples

More specifically one can check

*) Finite subgroups of SL(2,Z) acting on A2 = (C/Γ)2.
The quotient has rational double points, so there exist
crepant resolution, we get Kummer surfaces (K3).

*) Finite subgroups of SL(3,Z) acting on A3 = (C/Γ)3.
There exist crepant resolutions (Roan and others), we get
Calabi-Yau 3-folds.
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Examples

More specifically one can check

*) Finite subgroups of SL(2,Z) acting on A2 = (C/Γ)2.
The quotient has rational double points, so there exist
crepant resolution, we get Kummer surfaces (K3).

*) Finite subgroups of SL(3,Z) acting on A3 = (C/Γ)3.
There exist crepant resolutions (Roan and others), we get
Calabi-Yau 3-folds.
*) Finite subgroups of Sp(2n,C) acting on An = (C2/Γ)n.
due to Fujiki-Beauville.
Together with two sporadic examples of O’ Grady they are
the only examples of Irreducible Symplectic mfds.
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Local symplectic contractions

Consider a local symplectic contractions π : X → Y where

X is a symplectic manifold

Y is an affine normal variety,

π is a birational projective morphism with connected
fibers.
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Local symplectic contractions

Consider a local symplectic contractions π : X → Y where

X is a symplectic manifold

Y is an affine normal variety,

π is a birational projective morphism with connected
fibers.

In dimension 2 symplectic contractions are classical and
they are minimal resolutions of Du Val singularities An, Dn,
E6, E7, E8.
They are quotients of type C2/H with H < SL(2,C) a finite
group.
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Quotient symplectic singularities

For example take G < Sp(2n,C), i.e. G preserves a
symplectic form σ.
For any resolution π : X → C2n/G the form π∗(σ) extends
to a holomorphic two form on X (Beauville).
If it is non degenerate everywhere then π is a symplectic
resolution (a symplectic contraction). This is equivalent to
be crepant.
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Quotient symplectic singularities

For example take G < Sp(2n,C), i.e. G preserves a
symplectic form σ.
For any resolution π : X → C2n/G the form π∗(σ) extends
to a holomorphic two form on X (Beauville).
If it is non degenerate everywhere then π is a symplectic
resolution (a symplectic contraction). This is equivalent to
be crepant.
Problem: describe G < Sp(2n,C) which admit a symplectic
resolution (even for n = 2).
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Examples

Let S be a smooth surface. Then

Hilbn(S) := S[n]S → (S)n/σn := Sn(S)

is a crepant resolution; it is the blow-up of the diagonal
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Examples

Take H < SL(2,C) and let S → C2/H be the minimal
desingularization (symplectic contraction).

Consider the composition

S[n]S → Sn(S) → Sn(C2/H)

it is a crepant map.

It is the symplectic resolution of Sn(C2/H) = C2n/G where
G = (H)n ⋊ σn < Sp(2n).

This is the local Hilbn case of Beauville and Fujiki.
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Examples

Consider the composition S[n+1](C2) → Sn+1(C2) → C2,
where the last is τ : (a1, ..., an+1), (b1, ..., bn+1) → (Σai,Σbi).

The restriction X := π−1(0, 0) → τ−1(0, 0) is a crepant map.

It is the symplectic resolution of τ−1(0, 0) = C2n/G where
G = σn+1 < Sp(2n).

This is the local Kumn case of Beauville and Fujiki.
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Symplectic resolution for Cn ⊕ Cn∗

Let G < GL(n,C) a finite subgroup. G can be viewed as a
subgroup G < Sp(Cn ⊕ Cn∗) = Sp(C2n) (the symplectic
form preserved is the identity in Cn ⊕ Cn∗.
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Symplectic resolution for Cn ⊕ Cn∗

Let G < GL(n,C) a finite subgroup. G can be viewed as a
subgroup G < Sp(Cn ⊕ Cn∗) = Sp(C2n) (the symplectic
form preserved is the identity in Cn ⊕ Cn∗.
Theorem. (Bellamy) Let G < GL(n,C); a symplectic
resolution of C2n/G exists iff G is one of the two groups
above or G is the binary tetrahedral group, BT = Q⋊ Z3,
acting on C4 = C2 ⊕ C2∗.
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Symplectic resolution for Cn ⊕ Cn∗

Let G < GL(n,C) a finite subgroup. G can be viewed as a
subgroup G < Sp(Cn ⊕ Cn∗) = Sp(C2n) (the symplectic
form preserved is the identity in Cn ⊕ Cn∗.
Theorem. (Bellamy) Let G < GL(n,C); a symplectic
resolution of C2n/G exists iff G is one of the two groups
above or G is the binary tetrahedral group, BT = Q⋊ Z3,
acting on C4 = C2 ⊕ C2∗.
Remark. a)Lehn-Sorger described explicitly a local
symplectic resolution for C4/BT .

b) Kummer construction applies for the first two but it does

NOT apply for BT (i.e. there is no global symplectic resolu-

tion) (– ,Wisniewski).
Holomorphic Symplectic Manifolds – p.10/35



Special properties

Remarks: Y has rational singularities, KY is trivial and π is
crepant. All exceptional fibres are uniruled.
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Special properties

Remarks: Y has rational singularities, KY is trivial and π is
crepant. All exceptional fibres are uniruled.
Theorem (Wierzba - Namikawa) π is semismall, i.e. for
every Y ⊂ X
2codim(F ) ≥ codim(π(F )).
If equality holds then F is called a maximal cycle.
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Special properties

Remarks: Y has rational singularities, KY is trivial and π is
crepant. All exceptional fibres are uniruled.
Theorem (Wierzba - Namikawa) π is semismall, i.e. for
every Y ⊂ X
2codim(F ) ≥ codim(π(F )).
If equality holds then F is called a maximal cycle.

Theorem (Z. Ran- Wierzba) Let f : P1 → X be a non
constant map whose image is a π exceptional curve. Then
f deforms in a family (Hilb) of dimension at least dimX + 1.
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McKay correspondence

Let G < Sp(V ) and for g ∈ G : age(g) = 1/2codim(V )g.

Theorem (Batyrev-Kaledin- ...).
Assume there exists a symplectic resolution π : X → V/G,
then:
dimH2i(X,Q) = ♯{conj. classes of el. of G of age = i};
odd homology is zero.
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McKay correspondence

Let G < Sp(V ) and for g ∈ G : age(g) = 1/2codim(V )g.

Theorem (Batyrev-Kaledin- ...).
Assume there exists a symplectic resolution π : X → V/G,
then:
dimH2i(X,Q) = ♯{conj. classes of el. of G of age = i};
odd homology is zero.

Moreover there exists a base of H2i(X,Q) given by
maximal cycles which are counter-image of (V )g with
codimV g = i .
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4-dimensional case

From now on we restrict to the case dimX = 4.

By semi-smallness Exc(π) consists (possibly) of

Dj exceptional divisors mapping to surfaces
π(Dj) := Si ⊂ Y

Tk two dimensional special fibers
π(Tk) = pt := 0 ∈ Y .

Remark. (Wierzba)
The general fiber F is a tree of rational curves.
Components of a general fiber are callled essential curves;
if two stay in the same component Dj they are deforamtion
equivalent.
The normalization of a two dimensional fiber is a rational
surface. Holomorphic Symplectic Manifolds – p.13/35



Small contractions

Theorem
(Wierzba-Wisniewski, Cho-Myiaoka- Sheperd Barron).
If π is small (i.e. Dj = ∅) then the Ti are a finite numbers of
disjoint P2 with normal bundle T ∗P2.
(Mukai flop)
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Chow Scheme

Let C ⊂ π−1(s), s ∈ Si \ {= 0} be an essential curve and
V ⊂ Chow(X/Y ) an irreducible component, i.e. a Chow
family of rational curve, containing it and such that the map
V → S̃i → Si is dominant.

Consider the incidence diagram: U

��

q
// Dj ⊂ X

��

V // S̃i
// Si

where S̃i is the normalization.
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Chow Scheme

U

��

q
// Dj ⊂ X

��

V // S̃i
// Si

Proposition (Wierzba, Conde-Wisniewski, — - Wisniewski)
V is smooth and it has a holomorphic closed two form non
degenerate (possibly) outside some (−1)-curves.
In particular S̃i has at most a double point singularity at 0
and V is a not necessarly minimal desingularization of S̃i.
q is not of maximal rank on the locus over the (−1)-curve.
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Mori Dream Spaces

Let π : X → Y be a projective morphism of normal
varieties with connected fibers and Y = SpecA.
By N ef(X/Y ) ⊂ N 1(X/Y ) we understand the closure of
the cone spanned by the classes of relatively-ample
bundles
By Mov(X/Y ) ⊂ N 1(X/Y ) we understand the cone
spanned by the classes of linear systems which have no
fixed components.
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Mori Dream Spaces

Assume that X is Q-factorial and Pic(X/Y ) is a lattice
(finitely generated abelian group with no torsion); let
N 1(X/Y ) = Pic(X/Y )⊗Q.
We say that X is a Mori Dream Space (MDS) over Y if:

1. N ef(X/Y ) is the affine hull of finitely many
semi-ample line bundles:

2. there is a finite collection of small Q-factorial
modifications (SQM) over Y , fi : X − → Xi such that
Xi −→ Y satisfies the above assumptions and
Mov(X/Y ) is the union of the strict transforms
f ∗
i (N ef(Xi)).
Xi are called the SQM models.
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More on MDS

Note that a version of the theorems of Hu-Keel works in the
relative situation too.
In particular, the relative Cox ring, Cox(X/Y ), is a well
defined, finitely generated, graded module⊕

L∈Pic(X/Y ) Γ(X,L).
Moreover X is a GIT quotient of Spec(

⊕
L∈Pic(X/Y ) Γ(X,L))

under the Picard torus Pic(Y/X)⊗ C∗ action.

Holomorphic Symplectic Manifolds – p.19/35



Symplectic contractions are MDS

Theorem. Let π : X → Y be a 4-dimensional local
symplectic contraction.
Then X is a Mori Dream Space over Y .
Moreover any SQM model of X over Y is smooth and any
two of them are connected by a finite sequence of Mukai
flops.
In particular, there are only finitely many non isomorphic
(local) symplectic resolution of Y .
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Symplectic contractions are MDS

Theorem. Let π : X → Y be a 4-dimensional local
symplectic contraction.
Then X is a Mori Dream Space over Y .
Moreover any SQM model of X over Y is smooth and any
two of them are connected by a finite sequence of Mukai
flops.
In particular, there are only finitely many non isomorphic
(local) symplectic resolution of Y .
Proof

Cone theorem holds (Mori, Kawamata)

Base point free theorem (Kawamata, Shokurov)

Existence of flops (Wierzba-Wisniewski)

Termination (Matsuki). Holomorphic Symplectic Manifolds – p.20/35



Movable cone

N1(X/Y ) denotes the vector space of 1-cycles proper over
Y . We define Ess(X/Y ) as the convex cone spanned by
the classes of curves which are not contained in π−1(0)

Theorem (— -Wisniewski, Altmann-Wisniewski)
Mov(X/Y ) =< Ess(X/Y ) >

∨

.
In particular the cone Mov(X/Y ) is symplicial.
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Movable cone

N1(X/Y ) denotes the vector space of 1-cycles proper over
Y . We define Ess(X/Y ) as the convex cone spanned by
the classes of curves which are not contained in π−1(0)

Theorem (— -Wisniewski, Altmann-Wisniewski)
Mov(X/Y ) =< Ess(X/Y ) >

∨

.
In particular the cone Mov(X/Y ) is symplicial.

Theorem The subdivision of Mov(X/Y ) into the subcones
N ef(Xi/Y ) is done by hyperplanes, corresponding to
small contractions.
(that is the internal walls are of the type C ∩Mov(X/Y )
where C is an hyperplane in N 1(X/Y )).
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Semi direct product
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Semi direct product

The resolution X → C4/(Z2)
2 ⋊ Z2 contains:

a reducible divisor D = D0 ∪D1,
the fiber over 0 which is F4 ∪ P2.
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Semi direct product: Chow

The surface S has a singularity of type A1

V0 is the minimal resolution, the curve in U0 over the −2
correspond to curves in F4.
V1 is also the minimal resolution and the curve in U1 over
the −2 correspond to the splitting curves in F4 ∪ P2.
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Semi direct product: MDS

Pic(X/Y ) = Z2 = and NE(X/Y ) =< e0, e1 − e0 >, where
e1 − e0 is a line in P2.
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Semi direct product: MDS

Pic(X/Y ) = Z2 = and NE(X/Y ) =< e0, e1 − e0 >, where
e1 − e0 is a line in P2.

There are two symplectic resolution of C4/(Z2)
2 ⋊ Z2. They

are symmetric and the flop passes from one to the other.
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Semi direct product: resolution

The resolution X → C4/BT contains:
a reducible divisor D = D1 ∪D2,

the fiber over 0 which is F4 ∪ F4 ∪ Blp(P
1 × P1) ∪ P2 ∪ P2.
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Semi direct product: resolution

A

B1 B2

C1 C2

A

B1 B2

C1 C2

A

B1 B2

C1 C2

A

B1 B2

C1 C2

A

B1 B2

C1 C2
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Semi direct product: MDS

There are five different symplectic resolutions of C4/(Z3)
2⋊

Z2.
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Movable cone for (Zn)
2 ⋊ Z2

Theorem Let X → C4/(Zn)
2 ⋊ Z2 a symplectic resolution.

The exceptional locus consists of n divisor,
D0, D1, ...., Dn−1, and (n+ 2)(n− 1)/2 two dimensional
fibers. Let ei be an essential curve in Di.
Then Mov(X/Y ) =< e0, e1, ..., en−1 >

∨

.
The division of Mov(X/Y ) into Mori chambers is defined
by hyperplanes λ⊥

ij for 1 ≤ i ≤ j ≤ n where
λij = e0 − (ei + ...+ ej).

To each chamber it corresponds a symplectic resolution;

they give all the symplectic resolutions.
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σ3 example

The resolution X → C4/σ3

contains an irr. divisor D
a fiber over 0 equal to S3.

The surface S̃ is smooth,
V is the blow-up of a point,
the curves in U over the −1
correspond to lines in S3.
Pic(X/Y ) = Z

and this is the unique
symplectic resolution
of C4/σ3.
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Binary tetrahedral

The resolution X → C4/BT contains:
a reducible divisor D = D1 ∪D2,
the fiber over 0 which is S3 ∪ F4 ∪ Blp(S3) ∪ P2.
π1 contracts D1 as above, π2 is the small contraction of P2.
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Binary tetrahedral: Chow

The surface S̃ has a A1 singularity.

V1 and V2 are both non minimal resolution of this singular-

ities. In each case the fiber contains two rational curves

meeting transversally: a (-1) curve, corresponding to curves

in S3 respectively Blp(S3), and a (−3)-curve.
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Binary tetrahedral: MDS

Pic(X/Y ) = Z2 = and NE(X/Y ) =< e1, e2 − e1 >, where
e2 − e1 is a line in P2.
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Binary tetrahedral: resolutions

There are two symplectic resolution of C4/BT . They are
symmetric and the flop passes from one to the other.
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A conjecture

Conjecture Let π : X → Y be a local symplectic contraction
on a smooth projective manifold of dimension 4. Assume
that it is elementary, i.e. that Pic(X/Y ) ≃ Z. Then it is one
of the following:

the small contraction.

the symplectic resolution of C4/σ3

the symplectic resolution of C4/Z2.
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