

Conference in Schiermonnikoog

Lifting from an ample section

Marco Andreatta

Dipartimento di Matematica Universitá di Trento

Set up

Let X be a complex projective manifold, $n = dim X \ge 4$.

Set up

Let X be a complex projective manifold, $n = dim X \ge 4$.

 $Y \subset X$ is a submanifold which is the zero section of an ample vector bundle \mathcal{E} of rank r = dim X - dim Y (or the more general case in which simply $N_{Y/X}$ ample)

Let X be a complex projective manifold, $n = dim X \ge 4$.

 $Y \subset X$ is a submanifold which is the zero section of an ample vector bundle \mathcal{E} of rank r = dim X - dim Y (or the more general case in which simply $N_{Y/X}$ ample)

Problem: Compare the geometries of X and Y

Principle

Example If $Y = \mathbb{P}^m$ then $X = \mathbb{P}^n$.

Principle

Example If $Y = \mathbb{P}^m$ then $X = \mathbb{P}^n$.

On the other hand if $X=\mathbb{P}^n$ then Y is any effective submanifold of X

Principle

Example If $Y = \mathbb{P}^m$ then $X = \mathbb{P}^n$.

On the other hand if $X = \mathbb{P}^n$ then Y is any effective submanifold of X

The general principle is that a given ample section gives strong restriction to the ambient.

Actually many manifolds cannot be ample divisors of any manifolds.

Sommese result

In the above quoted paper (1976) Sommese proved:

Theorem. (assume r=1) Let $p:Y\to Z$ be a holomorphic surjection with $dim Y-dim Z\geq 2$. Then there exists $\hat{p}:X\to Z$ which extends p.

Sommese result

In the above quoted paper (1976) Sommese proved:

Theorem. (assume r=1) Let $p:Y\to Z$ be a holomorphic surjection with $dim Y-dim Z\geq 2$. Then there exists $\hat{p}:X\to Z$ which extends p.

He conjectured the case $r \ge 2$ as well, under the assumption $dim Y - dim Z \ge r + 1$.

Sommese result

In the above quoted paper (1976) Sommese proved:

Theorem. (assume r=1) Let $p:Y\to Z$ be a holomorphic surjection with $dim Y-dim Z\geq 2$. Then there exists $\hat{p}:X\to Z$ which extends p.

He conjectured the case $r \geq 2$ as well, under the assumption $dim Y - dim Z \geq r + 1$.

Corollary. $Y = Y^1 \times Y^2$ with $dim Y^i \ge 2$ cannot be an ample divisor

Badescu example

Let $Y = \mathbb{P}^1 \times \mathbb{P}^{n-2}$. By the above result the first projection extends $p_1 : X \to \mathbb{P}^1$ and one can prove that $X = \mathbb{P}(\mathcal{G})$.

Badescu example

Let $Y = \mathbb{P}^1 \times \mathbb{P}^{n-2}$. By the above result the first projection extends $p_1 : X \to \mathbb{P}^1$ and one can prove that $X = \mathbb{P}(\mathcal{G})$.

Let

$$0 \to \bigoplus^n \mathcal{O}_{\mathbb{P}^1} \to \bigoplus^n (\mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(s-a)) \to \bigoplus^n \mathcal{O}_{\mathbb{P}^1}(s) \to 0$$

with a, s such that 0 < s - a < a.

This gives $Y = \mathbb{P}^1 \times \mathbb{P}^{n-1} \subset X = \mathbb{P}(\mathcal{G})$ as an ample section of $\mathcal{E} = \bigoplus^n \xi_{\mathcal{G}}$ with $\mathcal{G} = \bigoplus^n (\mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(s-a))$

Badescu example

Let $Y = \mathbb{P}^1 \times \mathbb{P}^{n-2}$. By the above result the first projection extends $p_1 : X \to \mathbb{P}^1$ and one can prove that $X = \mathbb{P}(\mathcal{G})$.

Let

$$0 \to \bigoplus^n \mathcal{O}_{\mathbb{P}^1} \to \bigoplus^n (\mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(s-a)) \to \bigoplus^n \mathcal{O}_{\mathbb{P}^1}(s) \to 0$$

with a, s such that 0 < s - a < a.

This gives $Y = \mathbb{P}^1 \times \mathbb{P}^{n-1} \subset X = \mathbb{P}(\mathcal{G})$ as an ample section of $\mathcal{E} = \bigoplus^n \xi_{\mathcal{G}}$ with $\mathcal{G} = \bigoplus^n (\mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(s-a))$

The p_2 fibration does not extend (otherwise we would have a surjective map $\mathbb{P}^{n-1} \to \mathbb{P}^{n-2}$).

another conjecture

Sommese conjectured that the above example is the only case of a \mathbb{P}^k -bundle which is a ample divisor and whose contraction does not lift to the ambient.

The conjecture is true for $k \ge 2$ and if the target Z has dimension ≤ 2 or if it is minimal (in the MMP sense).

Birational case - Fujita's theorem

Theorem. (assume r=1) Let $p:Y:Bl_CZ\to Z$ be the blow-up of Z along $C\subset Z$ with $codim(C,Z)\geq 3$. Then there exists $\hat{p}:X\to \hat{Z}$ where $X=Bl_C\hat{Z}...$.

Birational case - Fujita's theorem

Theorem. (assume r=1) Let $p:Y:Bl_CZ\to Z$ be the blow-up of Z along $C\subset Z$ with $codim(C,Z)\geq 3$. Then there exists $\hat{p}:X\to \hat{Z}$ where $X=Bl_C\hat{Z}...$. The bound is sharp: Let

$$0 \to \bigoplus^{n} \mathcal{O}_{\mathbb{P}^{1}} \to \mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(a-1) \oplus^{n-3} \mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(a+1) := \mathcal{G}$$
$$\to \bigoplus^{n-2} \mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(a+1) \to 0$$

This gives $Y = Bl_{\mathbb{P}^{n-3}}\mathbb{P}^{n-1} \subset X = \mathbb{P}(\mathcal{G})$ as a ample section.

Birational case - Fujita's theorem

Theorem. (assume r=1) Let $p:Y:Bl_CZ\to Z$ be the blow-up of Z along $C\subset Z$ with $codim(C,Z)\geq 3$. Then there exists $\hat{p}:X\to \hat{Z}$ where $X=Bl_C\hat{Z}...$. The bound is sharp: Let

$$0 \to \bigoplus^{n} \mathcal{O}_{\mathbb{P}^{1}} \to \mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(a-1) \oplus^{n-3} \mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(a+1) := \mathcal{G}$$
$$\to \bigoplus^{n-2} \mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(a+1) \to 0$$

This gives $Y = Bl_{\mathbb{P}^{n-3}}\mathbb{P}^{n-1} \subset X = \mathbb{P}(\mathcal{G})$ as a ample section. The blow up contraction does not extend (Y is Fano while X is not).

Weak Lefschetz: $N^1(X) \to N^1(Y)$ is an isomorphism if $\dim Y \geq 3$ (surjective if $\dim Y = 2$).

Weak Lefschetz: $N^1(X) \to N^1(Y)$ is an isomorphism if $\dim Y \geq 3$ (surjective if $\dim Y = 2$).

 $N^1(X)\supset A(X)$ ample cone, $\overline{A(X)}$ nef cone $N_1(X)\supset NE(X)$ effective curves, $\overline{NE(X)}$ Mori-Kleiman. In the spirit of Mori theory, compare the cones of X and Y.

Weak Lefschetz: $N^1(X) \to N^1(Y)$ is an isomorphism if $\dim Y \geq 3$ (surjective if $\dim Y = 2$).

 $N^1(X)\supset A(X)$ ample cone, $\overline{A(X)}$ nef cone

 $N_1(X)\supset NE(X)$ effective curves, $\overline{NE(X)}$ Mori-Kleiman.

In the spirit of Mori theory, compare the cones of X and Y.

The above examples say that the inclusions are strict:

$$\overline{A(X)}\subset \overline{A(Y)}$$
 and $\overline{NE(X))}\supset \overline{NE(Y)}$.

Weak Lefschetz: $N^1(X) \to N^1(Y)$ is an isomorphism if $\dim Y \geq 3$ (surjective if $\dim Y = 2$).

 $N^1(X)\supset A(X)$ ample cone, $\overline{A(X)}$ nef cone

 $N_1(X) \supset NE(X)$ effective curves, $\overline{NE(X)}$ Mori-Kleiman.

In the spirit of Mori theory, compare the cones of X and Y.

The above examples say that the inclusions are strict:

$$\overline{A(X)}\subset \overline{A(Y)}$$
 and $\overline{NE(X))}\supset \overline{NE(Y)}$.

Study the polyhedral part of the cone, i.e $\overline{NE(X)}_{K_X\leq 0}$.

cone

Extr rays of X are (extremal) in Y ?

Theorem (Wisniewski) If X is Fano with no extremal contractions with fibers ≤ 1 then A(X) = A(Y).

Extr rays of X are (extremal) in Y ?

Theorem (Wisniewski) If X is Fano with no extremal contractions with fibers ≤ 1 then A(X) = A(Y).

Theorem (Andreatta-Occhetta, Hasset-others, built on Wisniewski and Kollár) Let $R \in NE(X)_{K_Y \leq 0}$ ($(K_X + det\mathcal{E}) \cdot R = K_Y \cdot R \leq 0$) extremal, then it is (extremal) in Y.

Extr rays of X are (extremal) in Y ?

Theorem (Wisniewski) If X is Fano with no extremal contractions with fibers ≤ 1 then A(X) = A(Y).

Theorem (Andreatta-Occhetta, Hasset-others, built on Wisniewski and Kollár) Let $R \in NE(X)_{K_Y \leq 0}$ ($(K_X + det\mathcal{E}) \cdot R = K_Y \cdot R \leq 0$) extremal, then it is (extremal) in Y.

Corollary If Y is not minimal then there exists at least a common ray.

Subcorollary Sommese's conjecture is true if Z is not minimal (and if it is a surface).

cone 2

cone of the example

Extr rays of Y are extremal in X ?

Remark The two above examples are the only known of rays in $NE(Y)_{K_Y<0}$ which do not lift. (Easy to find in the positive part of the cone).

Question: If $\rho \geq 3$ are rays in $NE(Y)_{K_Y < 0}$ extremal in X?

Extr rays of Y are extremal in X ?

Remark The two above examples are the only known of rays in $NE(Y)_{K_Y<0}$ which do not lift. (Easy to find in the positive part of the cone).

Question: If $\rho \geq 3$ are rays in $NE(Y)_{K_Y < 0}$ extremal in X?

Theorem (Andreatta-Occhetta, Ionescu) Take a supporting divisor of R in Y of the type $K_Y + \tau L_Y$, with L_Y ample. If L_X is ample then R is extremal in X.

Extr rays of Y are extremal in X ?

Remark The two above examples are the only known of rays in $NE(Y)_{K_Y<0}$ which do not lift. (Easy to find in the positive part of the cone).

Question: If $\rho \geq 3$ are rays in $NE(Y)_{K_Y < 0}$ extremal in X?

Theorem (Andreatta-Occhetta, Ionescu) Take a supporting divisor of R in Y of the type $K_Y + \tau L_Y$, with L_Y ample. If L_X is ample then R is extremal in X.

Theorem (Andreatta- Occhetta) Let Y be a Fano manifold of index r, i.e. $-K_Y = rH_Y$ with H_Y spanned and $r \geq \frac{dimY}{2}$. Then X is Fano and NE(X) = NE(Y), unless $Y = \mathbb{P}^1 \times V$ with $V = \mathbb{P}^3$ or a del Pezzo manifold with $\rho(V) = 1$.

Let $V_X \subset Hom(\mathbb{P}^1,X)$ an irreducible family of rational curve.

Let $V_X \subset Hom(\mathbb{P}^1,X)$ an irreducible family of rational curve.

Definition V is said unsplit if its image in Chow is closed; it is said numerically unsplit if all irreducible components of the image in Chow are numerically proportional.

Let $V_X \subset Hom(\mathbb{P}^1,X)$ an irreducible family of rational curve.

Definition V is said unsplit if its image in Chow is closed; it is said $numerically\ unsplit$ if all irreducible components of the image in Chow are numerically proportional.

Theorem (Occhetta, Beltrametti-de Fernex- Lanteri)

Let $R=\mathbb{R}_+[C]\in \overline{NE(Y)_{K_Y<0}}$ and let $V_X\subset Hom(\mathbb{P}^1,X)$ an irreducible family containing $f:\mathbb{P}^1\to C$.

If V_X is a covering family , this is the case if R is of fiber type and we choose C in a covering family of Y, and numerically-unsplit then R is external in X.

Let $V_X \subset Hom(\mathbb{P}^1,X)$ an irreducible family of rational curve.

Definition V is said unsplit if its image in Chow is closed; it is said $numerically\ unsplit$ if all irreducible components of the image in Chow are numerically proportional.

Theorem (Occhetta, Beltrametti-de Fernex- Lanteri)

Let $R=\mathbb{R}_+[C]\in \overline{NE(Y)_{K_Y<0}}$ and let $V_X\subset Hom(\mathbb{P}^1,X)$ an irreducible family containing $f:\mathbb{P}^1\to C$.

If V_X is a covering family, this is the case if R is of fiber type and we choose C in a covering family of Y, and numerically-unsplit then R is external in X.

Remark The assumption about numerically unsplit is necessary. In the first example it is not attained

Proof: breaking lemma

Lemma For every curve $\Gamma \in Locus(V, \{0\} \to Y)$ we have

$$\Gamma = a\Gamma_Y + bC$$

in $N_1(X)$, where C is a curve in \overline{V} , Γ_Y is a curve in Y and a>0.

Proof: breaking lemma

Lemma For every curve $\Gamma \in Locus(V, \{0\} \to Y)$ we have

$$\Gamma = a\Gamma_Y + bC$$

in $N_1(X)$, where C is a curve in \overline{V} , Γ_Y is a curve in Y and a>0.

Proof

Rational connected fibrations

Given a family of rational curve V dense in X we say that $x\sim_{rc_V}y$ iff there exists a chain of curves in $\overline{V}\subset Chow_1(X)$ containing x and y

Rational connected fibrations

Given a family of rational curve V dense in X we say that $x \sim_{rc_V} y$ iff there exists a chain of curves in $\overline{V} \subset Chow_1(X)$ containing x and y

Theorem (Campana, KMM) There exists an open subset $X_0 \subset X$ and a dominant morphism $X_0 \to X//V$ onto a normal projective variety with connected fibers and proper over the image, whose very general fibers are rc_V equivalence classes in X.

Rational connected fibrations

Given a family of rational curve V dense in X we say that $x\sim_{rc_V} y$ iff there exists a chain of curves in $\overline{V}\subset Chow_1(X)$ containing x and y

Theorem (Campana, KMM) There exists an open subset $X_0 \subset X$ and a dominant morphism $X_0 \to X//V$ onto a normal projective variety with connected fibers and proper over the image, whose very general fibers are rc_V equivalence classes in X.

 $X \longrightarrow X//V$ is the rc_V -fibration and X//V is a rc_V -quotient.

Theorem (Occhetta, Beltrametti-de Fernex - Lanteri) Let $Y \subset X$ with $N_{Y/X}$ ample and $N^1(X) \to N^1(Y)$ surjective. Let V_Y be a family of rational curve dense in Y.

Theorem (Occhetta, Beltrametti-de Fernex - Lanteri) Let $Y \subset X$ with $N_{Y/X}$ ample and $N^1(X) \to N^1(Y)$ surjective. Let V_Y be a family of rational curve dense in Y. 1) Its extension V_X is dense in X and, for suitable choice of the quotient, there exists a commutative diagram

$$Y \xrightarrow{i} X$$

$$\pi_{\downarrow}^{\downarrow} \qquad \qquad \downarrow^{\varphi}$$

$$Y / / V_{Y} \xrightarrow{\delta} X / / V_{X}$$

Where π and φ are the rc_V fibrations and δ is a surjective morphism.

- 2) Moreover δ is generically finite if one of the following holds:
- i) $H^0(Y//V_Y, K_{Y//V_Y}) \neq 0$
- ii) $dimY dimY//V_Y > r$
- iii) V_X is generically numerically unsplit.

- 2) Moreover δ is generically finite if one of the following holds:
- i) $H^0(Y//V_Y, K_{Y//V_Y}) \neq 0$
- ii) $dimY dimY//V_Y > r$
- iii) V_X is generically numerically unsplit.

Proposition If Y is a smooth section of \mathcal{E} then the last condition is an if and only if (if one takes V_Y generically numerically unsplit). In the first example the family V_X is not generically numerically unsplit, while V_Y is unsplit.

- 2) Moreover δ is generically finite if one of the following holds:
- i) $H^0(Y//V_Y, K_{Y//V_Y}) \neq 0$
- ii) $dimY dimY//V_Y > r$
- iii) V_X is generically numerically unsplit.

Proposition If Y is a smooth section of \mathcal{E} then the last condition is an if and only if (if one takes V_Y generically numerically unsplit). In the first example the family V_X is not generically numerically unsplit, while V_Y is unsplit.

Question If a rc_V fibration on a manifold X is a regular morphism on a ample section Y is it regular on X? (a positive answer will solve Sommese's comjecture).

Definition. A normal projective \mathbb{Q} -factorial variety X is a Mori Dream Space if

- 1) $Pic(X)_{\mathbb{Q}} = N^1(X)_{\mathbb{Q}}$ (i.e. $H^1(\mathcal{O}_X) = 0$)
- 2) $Cox(X, \mathbb{L}) = \bigoplus_{m \in \mathbb{Z}^r} H^0(X, \mathbb{L})$ is finitely generated, where $\mathbb{L} = (L_1, ..., L_r)$ is a basis for $Pic(X)_{\mathbb{Q}}$.

Definition. A normal projective \mathbb{Q} -factorial variety X is a Mori Dream Space if

- 1) $Pic(X)_{\mathbb{Q}} = N^1(X)_{\mathbb{Q}}$ (i.e. $H^1(\mathcal{O}_X) = 0$)
- 2) $Cox(X, \mathbb{L}) = \bigoplus_{m \in \mathbb{Z}^r} H^0(X, \mathbb{L})$ is finitely generated, where $\mathbb{L} = (L_1, ..., L_r)$ is a basis for $Pic(X)_{\mathbb{Q}}$.

Let $N^1(X, \mathbb{L}) \subset N^1(X)$ be the subgroup generated by \mathbb{L}^m for $m \in \mathbb{Z}^r$ and $T_{\mathbb{L}} = Hom(N^1(X, \mathbb{L}), \mathbb{C}^*)$.

The natural grading corresponds to an action of $T_{\mathbb{L}}$ on $V = Spec(Cox(X, \mathbb{L}))$.

We can consider the GIT quotient $V//_{\chi}T$ with the trivial bundle \mathcal{O}_V and a T-linearization by an ample character χ .

Proposition A (Hu-Keel)

If X is a MDS then V_{χ}^{ss} does not depend on the choice of

$$\chi$$
, $X=V//_{\chi}T$ and

- i) V_{χ}^{un} has codimension ≥ 2 in V
- ii) $V_{\chi}^{ss} = V_{\chi}^{st}$
- iii) the maps $N^1(X)_{\mathbb{Q}} \to Pic^T(V^{ss}_{\chi})$ and

$$Pic(X)_{\mathbb{Q}} \to Pic^T(V^{ss}_{\chi})$$
 are isomorphisms.

Proposition A (Hu-Keel)

If X is a MDS then V_{χ}^{ss} does not depend on the choice of X

$$\chi$$
, $X=V//_{\chi}T$ and

- i) V_{χ}^{un} has codimension ≥ 2 in V
- ii) $V_{\chi}^{ss} = V_{\chi}^{st}$
- iii) the maps $N^1(X)_{\mathbb{Q}} \to Pic^T(V_{\chi}^{ss})$ and $Pic^T(V) \to Pic^T(V)$ are isomorphism

 $Pic(X)_{\mathbb{Q}} \to Pic^T(V^{ss}_{\chi})$ are isomorphisms.

Proposition B (Hu-Keel)

Let T be a torus acting on an affine variety V and χ be a character of T. If $X = V//_{\chi}T$ is projective \mathbb{Q} -factorial and i), ii), iii) hold then X is a MDS.

MDS, examples

Examples

- 1. Toric varieties with $Pic(X)_{\mathbb{Q}} = N^1(X)_{\mathbb{Q}}$ are MDS (Cox: the Cox ring is a polynomial ring iff X is toric).
- 2. Fano manifolds are MDS (Birkahr-Cascini-Hacon-McKernan).

Ample sections of MDS

Theorem (Jow Shin-Yao)

Let X be a smooth MDS of dimension ≥ 4 .

If $codim(V_{\chi}^{un}, V) \geq 3$ then every smooth ample divisor

 $Y \subset X$ is a MDS.

Moreover Nef(X) = Nef(Y).

Ample sections of MDS

Theorem (Jow Shin-Yao)

Let X be a smooth MDS of dimension ≥ 4 .

If $codim(V_{\chi}^{un}, V) \ge 3$ then every smooth ample divisor

 $Y \subset X$ is a MDS.

Moreover Nef(X) = Nef(Y).

Question When a MDS Y is an ample section? and the cones are equal?

Ample sections of MDS

Theorem (Jow Shin-Yao)

Let X be a smooth MDS of dimension ≥ 4 .

If $codim(V_{\chi}^{un}, V) \ge 3$ then every smooth ample divisor

 $Y \subset X$ is a MDS.

Moreover Nef(X) = Nef(Y).

Question When a MDS Y is an ample section? and the cones are equal?

Theorem (Batyrev- Mel'nikov)

A smooth toric variety Y is an ample section iff

$$Y=\mathbb{P}^{n-1}\subset X=\mathbb{P}^n$$
 or

$$Y = \mathbb{P}(\mathcal{F}) \subset X = \mathbb{P}(\mathcal{G}) \text{ with } 0 \to \mathcal{O}_{\mathbb{P}^1} \to \mathcal{G} \to \mathcal{F} \to 0.$$