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Set up

Let X be a complex projective manifold, n = dimX > 4.
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Set up

Let X be a complex projective manifold, n = dimX > 4.

Y C X is a submanifold which is the zero section of an
ample vector bundle £ of rank r = dimX — dimY

(or the more general case in which simply Ny, x ample)

Problem: Compare the geometries of X and Y
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Principle

Example If Y = P™ then X = P".
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Principle

Example If Y = P™ then X = P".

On the other hand if X = P” then Y is any effective
submanifold of X

The general principle is that a given ample section gives
strong restriction to the ambient.

Actually many manifolds cannot be ample divisors of any
manifolds.
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Sommese result

In the above guoted paper (1976) Sommese proved.

Theorem. (assume r =1) Letp: Y — Z be a holomorphic
surjection with dimY — dimZ > 2. Then there exists
p: X — Z which extends p.
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He conjectured the case r > 2 as well, under the
assumption dimY — dimZ > r + 1.
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Sommese result

In the above guoted paper (1976) Sommese proved.

Theorem. (assume r =1) Letp: Y — Z be a holomorphic
surjection with dimY — dimZ > 2. Then there exists
p: X — Z which extends p.

He conjectured the case r > 2 as well, under the
assumption dimY — dimZ > r + 1.

Corollary. Y = Y x Y? with dimY™® > 2 cannot be an ample
divisor
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Badescu example

Let Y = P! x P"2, By the above result the first projection
extends p; : X — P! and one can prove that X = P(G).
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Badescu example

Let Y = P! x P"2, By the above result the first projection
extends p; : X — P! and one can prove that X = P(G).

Let
0— ®"Op1t — B"(Opi(a) ® Opi(s—a)) = @"Opi(s) — 0

with a, s suchthat 0 < s — a < «a.
This gives Y = P! x P! ¢ X = P(G) as an ample section
Of g = @nfg W|th Q — @n(Opl (a) @ Opl (S — a))
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Let Y = P! x P"2, By the above result the first projection
extends p; : X — P! and one can prove that X = P(G).

Let
0— ®"Op1t — B"(Opi(a) ® Opi(s—a)) = @"Opi(s) — 0

with a, s suchthat 0 < s — a < «a.
This gives Y = P! x P! ¢ X = P(G) as an ample section
Of g = @nfg W|th Q — @n(O]pl (a) @ Opl (S — a))

The p, fibration does not extend (otherwise we would have
a surjective map P*~! — Pn—2),
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another conjecture

Sommese conjectured that the above example is the only

case of a P*-bundle which is a ample divisor and whose
contraction does not lift to the ambient.

The conjecture is true for £ > 2 and if the target Z has
dimension < 2 or if it is minimal (in the MMP sense).
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Birational case - Fujita’s theorem

Theorem. (assumer =1)Letp:Y : BloZ — Z be the
blow-up of Z along C' C Z with codim(C, Z) > 3. Then

there exists p : X — Z where X = BlgZ.... .
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Birational case - Fujita’s theorem

Theorem. (assumer =1)Letp:Y : BloZ — Z be the
blow-up of Z along C' C Z with codim(C, Z) > 3. Then

there exists p : X — Z where X = BlgZ.... .
The bound is sharp: Let

0— @nO]pl — Opl(l)@@pl (&—1)@n_30p1 ((1)@0@1 (a/‘|_1) L= g

— &" ?Opi(a) ® Opi(a+1) — 0
This gives Y = Blp.—3P" ' C X = P(G) as a ample section.
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Birational case - Fujita’s theorem

Theorem. (assumer =1)Letp:Y : BloZ — Z be the
blow-up of Z along C' C Z with codim(C, Z) > 3. Then

there exists p : X — Z where X = BlgZ.... .
The bound is sharp: Let

0— @nO]pl — Opl(l)@@pl (&—1)@n_301p>1 (a)@OPl (a‘|_1) L= g

— &" ?Opi(a) ® Opi(a+1) — 0

This gives Y = Blp.—3P" ' C X = P(G) as a ample section.

The blow up contraction does not extend
(Y Iis Fano while X is not).
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Lefschetz

Weak Lefschetz: N'(X) — N'(Y) is an isomorphism if
dimY > 3 (surjective if dim Y = 2).
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Lefschetz

Weak Lefschetz: N'(X) — N'(Y) is an isomorphism if
dimY > 3 (surjective if dim Y = 2).

N'(X) D A(X) ample cone, A(X) nef cone
Ni(X) D NE(X) effective curves, N E(X) Mori-Kleiman.
In the spirit of Mori theory, compare the cones of X and Y.
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Lefschetz

Weak Lefschetz: N'(X) — N'(Y) is an isomorphism if
dimY > 3 (surjective if dim Y = 2).

N'(X) D A(X) ample cone, A(X) nef cone
Ni(X) D NE(X) effective curves, N E(X) Mori-Kleiman.
In the spirit of Mori theory, compare the cones of X and Y.

The above examples say that the inclusions are strict:
AX)CAY)and NE(X)) D NE(Y)).
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Rk Lefschetz

Weak Lefschetz: N'(X) — N'(Y) is an isomorphism if
dimY > 3 (surjective if dim Y = 2).

N'(X) D A(X) ample cone, A(X) nef cone
Ni(X) D NE(X) effective curves, N E(X) Mori-Kleiman.
In the spirit of Mori theory, compare the cones of X and Y.

The above examples say that the inclusions are strict:
AX)CAY)and NE(X)) D NE(Y)).

Study the polyhedral part of the cone, i.e NE(X))x, <o-
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Extr rays of X are (extremal)in Y ?

Theorem (Wisniewski) If X is Fano with no extremal
contractions with fibers < 1 then A(X) = A(Y).
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Extr rays of X are (extremal)in Y ?

Theorem (Wisniewski) If X is Fano with no extremal
contractions with fibers < 1 then A(X) = A(Y).

Theorem (Andreatta-Occhetta, Hasset-others,

built on Wisniewski and Kollar)

Let R € NE(X)k, <o (Kx +det€) R = K; R < 0) extremal,
then it is (extremal) in Y.
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Extr rays of X are (extremal)in Y ?

Theorem (Wisniewski) If X is Fano with no extremal
contractions with fibers < 1 then A(X) = A(Y).

Theorem (Andreatta-Occhetta, Hasset-others,

built on Wisniewski and Kollar)

Let R € NE(X)k, <o (Kx +det€) R = K; R < 0) extremal,
then it is (extremal) in Y.

Corollary If Y 1s not minimal then there exists at least a
common ray.

Subcorollary Sommese’s conjecture is true if Z is not
minimal (and if it is a surface).
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cone 2

NE(X)
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cone of the example
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Extr rays of Y are extremalin X ?

Remark The two above examples are the only known of
rays in NE(Y )k, <o Which do not lift. (Easy to find in the
positive part of the cone).

Question: If p > 3 arerays in NE(Y )k, <o extremal in X?
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Extr rays of Y are extremalin X ?

Remark The two above examples are the only known of
rays in NE(Y )k, <o Which do not lift. (Easy to find in the

positive part of the cone).
Question: If p > 3 arerays in NE(Y )k, <o extremal in X?

Theorem (Andreatta-Occhetta, lonescu)
Take a supporting divisor of R in Y of the type Ky + 7Ly,
with Ly ample. If Lx is ample then R is extremal in X.
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Extr rays of Y are extremalin X ?

Remark The two above examples are the only known of
rays in NE(Y )k, <o Which do not lift. (Easy to find in the
positive part of the cone).

Question: If p > 3 arerays in NE(Y )k, <o extremal in X?

Theorem (Andreatta-Occhetta, lonescu)
Take a supporting divisor of R in Y of the type Ky + 7Ly,
with Ly ample. If Lx is ample then R is extremal in X.

Theorem (Andreatta- Occhetta) Let Y be a Fano manifold
of index r, i.e. —Ky = rHy with Hy spanned and r > 42X
Then X isFano and NE(X) = NE(Y),unlessY =P! x V
with V' = P® or a del Pezzo manifold with p(V') = 1.
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Families of rational curves

Let Vx € Hom(P', X) an irreducible family of rational
curve.
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Let Vx € Hom(P', X) an irreducible family of rational
curve.

Definition V' is said unsplit If its image in Chow is closed; it is
sald numerically unsplit if all irreducible components of the
Image in Chow are numerically proportional.
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Families of rational curves

Let Vx € Hom(P', X) an irreducible family of rational
curve.

Definition V' is said unsplit If its image in Chow is closed; it is
sald numerically unsplit if all irreducible components of the
Image in Chow are numerically proportional.

Theorem (Occhetta, Beltrametti-de Fernex- Lanteri)

Let R=R,[C] € NE(Y)g, o and let Vx € Hom(P!, X) an
irreducible family containing f : P* — C.

If Vx Is a covering family , this is the case if R is of fiber

type and we choose C' in a covering family of Y, and
numerically-unsplit then R is extemal in X.
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Families of rational curves

Let Vx € Hom(P', X) an irreducible family of rational
curve.

Definition V' is said unsplit If its image in Chow is closed; it is
sald numerically unsplit if all irreducible components of the
Image in Chow are numerically proportional.

Theorem (Occhetta, Beltrametti-de Fernex- Lanteri)

Let R=R,[C] € NE(Y)g, o and let Vx € Hom(P!, X) an
irreducible family containing f : P* — C.

If Vx Is a covering family , this is the case if R is of fiber

type and we choose C' in a covering family of Y, and
numerically-unsplit then R is extemal in X.

Remark The assumption about numerically unsplit is
necessary. In the first example it is not attained
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Proof: breaking lemma

Lemma For every curve I' € Locus(V,{0} — Y') we have
[' = (ILFY + bC

in N,(X), where C'isacurvein V, I'y is a curve in Y and
a > 0.
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Proof: breaking lemma

Lemma For every curve I' € Locus(V,{0} — Y') we have
[' = (ILFY + bC

in N,(X), where C'isacurvein V, I'y is a curve in Y and
a > 0.

Proof
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Rational connected fibrations

Given a family of rational curve V dense in X we say that

T ~,.., y iff there exists a chain of curves in V c Chow; (X)
containing x and y
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Rational connected fibrations

Given a family of rational curve V dense in X we say that

T ~,.., y iff there exists a chain of curves in V c Chow; (X)
containing x and y

Theorem (Campana, KMM) There exists an open subset
Xy C X and a dominant morphism X, — X//V onto a
normal projective variety with connected fibers and proper
over the image, whose very general fibers are rcy,
equivalence classes in X.
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Rational connected fibrations

Given a family of rational curve V dense in X we say that

T ~,.., y iff there exists a chain of curves in V c Chow; (X)
containing x and y

Theorem (Campana, KMM) There exists an open subset
Xy C X and a dominant morphism X, — X//V onto a
normal projective variety with connected fibers and proper
over the image, whose very general fibers are rcy,
equivalence classes in X.

X --+ X//V is the rcy -fibration and
X//V is a rcy-quotient.

Schiermonnikood — p. 16/22



Lifting rcy - fibrations, 1

Theorem (Occhetta, Beltrametti-de Fernex - Lanteri)
Let Y C X with Ny,x ample and N'(X) — N'(Y)
surjective. Let V4 be a family of rational curve dense in Y.
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Lifting rcy - fibrations, 1

Theorem (Occhetta, Beltrametti-de Fernex - Lanteri)
Let Y C X with Ny,x ample and N'(X) — N'(Y)
surjective. Let V4 be a family of rational curve dense in Y.

1) Its extension Vx Is dense in X and, for suitable choice of
the quotient, there exists a commutative diagram

Y i X

| |
| |
L | #

Y/>VY—5>X/>VX

Where 7 and ¢ are the rcy, fibrations and ¢ is a surjective
morphism.
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Lifting rcy - fibrations, 2

2) Moreover ¢ Is generically finite if one of the following
holds:

) HO(Y/ Vi, Ky, ) # 0
i) dimY — dimY//Vy >r
i) Vx 1s generically numerically unsplit.
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2) Moreover ¢ Is generically finite if one of the following
holds:

) HO(Y/ Vi, Ky, ) # 0
i) dimY — dimY//Vy >r
i) Vx 1s generically numerically unsplit.

Proposition If Y is a smooth section of £ then the last
condition is an if and only if (if one takes 13 generically
numerically unsplit). In the first example the family Vx is
not generically numerically unsplit, while V4 is unsplit.
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Lifting rcy - fibrations, 2

2) Moreover ¢ Is generically finite if one of the following
holds:

) HO(Y/ Vi, Ky, ) # 0
i) dimY — dimY//Vy >r
i) Vx 1s generically numerically unsplit.

Proposition If Y is a smooth section of £ then the last
condition is an if and only if (if one takes 13 generically
numerically unsplit). In the first example the family Vx is
not generically numerically unsplit, while V4 is unsplit.

Question If a rc¢y, fibration on a manifold X is a regular
morphism on a ample section Y is it regular on X?
(a positive answer will solve Sommese’s comjecture).
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Mori Dream Spaces

Definition. A normal projective Q-factorial variety X is a
Mori Dream Space |if

1) PZC(X)Q :Nl(X)Q (Ie Hl(Ox) :O)
2) Cox(X,L) = ®,nez- H°(X, L) is finitely generated,
where L = (Ly, ..., L,) is a basis for Pic(X)g.
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Definition. A normal projective Q-factorial variety X is a
Mori Dream Space |if

1) PZC(X)Q :Nl(X)Q (Ie Hl(Ox) :O)

2) Cox(X,L) = ®,nez- H°(X, L) is finitely generated,
where L = (Ly, ..., L,) is a basis for Pic(X)g.

Let N'(X,L) ¢ N'(X) be the subgroup generated by L™
form € Z" and Ty, = Hom(N*'(X,LL),C*).

The natural grading corresponds to an action of 71, on

V = Spec(Cox(X,L)).

We can consider the GIT quotient VV//, T" with the trivial
bundle Oy, and a T-linearization by an ample character y.
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Mori Dream Spaces

Proposition A (Hu-Keel)
If X i1s a MDS then V** does not depend on the choice of

x. X =V//, T and
) V" has codimension > 2 in V'

i) Vs = Vst
iii) the maps N'(X)q — Pic' (V*) and
Pic(X)g — Pic"(V;*) are isomorphisms.
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Mori Dream Spaces

Proposition A (Hu-Keel)
If X i1s a MDS then V** does not depend on the choice of

x. X =V//, T and
) V" has codimension > 2 in V'

i) V22 =V

iii) the maps N'(X)q — Pic' (V*) and

Pic(X)g — Pic"(V;*) are isomorphisms.

Proposition B (Hu-Keel)

Let 1" be a torus acting on an affine variety V' and y be a

character of 7. If X =V//, T is projective Q-factorial and
1), ii), iii) hold then X is a MDS.
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/?@iﬁ MDS, examples

Examples

1. Toric varieties with Pic(X)g = N*(X)g are MDS
(Cox: the Cox ring is a polynomial ring iff X is toric).

2. Fano manifolds are MDS
(Birkahr-Cascini-Hacon-McKernan).

Schiermonnikood — p. 21/22



Ample sections of MDS

Theorem (Jow Shin-Yao)
Let X be a smooth MDS of dimension > 4.
If codim/(V", V') > 3 then every smooth ample divisor

Y C X isaMDS.
Moreover Nef(X) = Nef(Y).
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Ample sections of MDS

Theorem (Jow Shin-Yao)
Let X be a smooth MDS of dimension > 4.
If codim/(V", V') > 3 then every smooth ample divisor

Y C X isaMDS.
Moreover Nef(X) = Nef(Y).

Question When a MDS Y is an ample section? and the
cones are equal?

Schiermonnikood — p. 22/22



Ample sections of MDS

Theorem (Jow Shin-Yao)
Let X be a smooth MDS of dimension > 4.
If codim/(V", V') > 3 then every smooth ample divisor

Y C X isaMDS.
Moreover Nef(X) = Nef(Y).

Question When a MDS Y is an ample section? and the
cones are equal?

Theorem (Batyrev- Mel’'nikov)

A smooth toric variety Y is an ample section iff
Y=PlcX=Por

Y=PF)c X=PG)with0 — Op1 — G — F — 0.

Schiermonnikood — p. 22/22
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