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Introduction

Theorem of Berger: the holonomy group of a connected
Riemanian manifold (M, g), not symmetric, irreducible and
simply connected, is one of the following

SO(n),

U(m) C SO(2m),

SU(m) C SO(2m), m > 3,
Sp(r) C SO(4r),

Sp(1)Sp(r) C SO(4r), r > 2,
Gy C SO(7)

Spin(7) C SO(8)
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L) Holonomy characterization
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If we fix the holonomy group we impose certain parallel
tensor fields; smaller is the holonomy more special is the

manifold.
Sp(r) C SU((2r),SU(m) Cc U(m) C SO(2m)
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Holonomy characterization

If we fix the holonomy group we impose certain parallel
tensor fields; smaller is the holonomy more special is the
manifold.

Sp(r) C SU((2r),SU(m) Cc U(m) C SO(2m)

H c U(m) C SO(2m):

iff Z commutes with endomorphism v — v of R*™ = C™
iff parallel endomorphism J of T(M), J* = —1I

Iff M has a Kahler complex structure J.
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Calabi Yau

H c SU(m):

iff H C U(m) and H preserves the C-multilinear alternating
m-form det : C" — C

Iff M Is Kahler and there exists an holomorphic parallel
m-form w # 0

The viceversa follows from Yau’s theorem.
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Hyperkahler-Symplectic manifolds

Sp(r) = U(r,H) < GL(r,H) preserving the hermitian form
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Hyperkahler-Symplectic manifolds

Sp(r) = U(r,H) < GL(r,H) preserving the hermitian form
"Hamilton": H = R + R; + Rj + Rk, H" = R?".

Sp(r) is the subgroup of O(R*") commuting with i, 7, k.

If H C Sp(r) then M has parallel complex structures I, J, K
and it is called hyperkéahler.

(actually a sphere S% = {al +bJ + cK : a* +b* + ¢* = 1}.)

Varieta simplettiche olomorfecostruzioni classiche e calcolo deali invarianti — p. 5/38



Hyperkahler-Symplectic manifolds

Sp(r) = U(r,H) < GL(r,H) preserving the hermitian form
"Hamilton": H = R + R; + Rj + Rk, H" = R?".

Sp(r) is the subgroup of O(R*") commuting with i, 7, k.

If H C Sp(r) then M has parallel complex structures I, J, K
and it is called hyperkéahler.

(actually a sphere S% = {al +bJ + cK : a* +b* + ¢* = 1}.)
"Cayley": C = R + Ri, H = C(j) with jz = zj; H= C*".

Y = h+ @j: his C-hermitian and ¢ is C bilinear alternating.
Thus Sp(r) = U(2r,C) N Sp(2r,C) and

if H C Sp(r) then M has a complex k&hler structure +

a parallel holomorphic symplectic 2-form ¢, unique up to a
scalar.
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Theorem Let X be a compact Kahler manifold with
c1(X) = 0. Then X has a finite unramified cover Y such

that
Y = 7 x I1S; x 1IC,

where
Z 1S a a complex torus

each S; is a simply connected holomorphic symplectic
manifold with H?(S;, Os,) = 1

each C; is a simply connected Calabi Yau manifold with
H?*(C;,O0c,) =0
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e Example of Symplectic-Hyperkahler

r=1,S5p(1) =SU(2):

M is a compact complex surface with a non zero
holomorphic 2-form and m; = 0 (assume only b; = 0).
They are the so called i 3-surfaces.

For instance a quartic in 2. They are all deformations of
each others, thus all diffeomorphic and with 7; = 0.
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Example of Symplectic-Hyperkahler

S5t
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r=1,S5p(1) =SU(2):

M is a compact complex surface with a non zero
holomorphic 2-form and m; = 0 (assume only b; = 0).
They are the so called i 3-surfaces.

For instance a quartic in 2. They are all deformations of
each others, thus all diffeomorphic and with 7; = 0.

Kummer surfaces Take an abelian surface A and consider
the action of Z, on A by involution a — —a. The quotient
has 16 simple double points. In particular it admits a
crepant resolution X — Y/Z,, X is a K 3-surface (called
Kummer).
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(Generalized) Kummer construction
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Take an integral (irreducible) representation of a finite
group pz : G — GL(r, 7).

Take an abelian variety A of dimension d and extend p
to pA = Pz Q7 A:G— AUt(AT)

If d not even then assume pz : G — SL(r,Z).
The representation on TA" and H'(A",C) is d pc.

Take the quotient Y = A" /G, find a crepant resolution
X — Y, get a complex manifold with H'(X,C) = 0 and
Kx =0, I.e. a Calabi-Yau or a Symplectic manifold.
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More general construction

More generally:

Consider a finite group of automorphisms of an abelian
variety A, i.e. G < Aut(A)

The tangent action at the unit of A is a complex
representation of G, thatis p: G — GL(TA).

The same representation is in cohomology
p:G— GL(H'Y(A,QC)).

Want trivial invariant subspace and
p(G) < SL(H'(A,C))
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Problem: existence of a crepant
resolution

On dimension 2 and 3 we know a lot about crepant
resolutions but this is not the case in higher
dimensions.

For solvable groups we can take towers of resolutions
of abelian singularities, provided at each step we get
an equivariant one.

Via Hilbert schemes: for a smooth surface S the
Hilbert scheme H:lb"(S) provides a crepant resolution

Hilb"(S) — Sym™(S) (classical, Fogarty). .
For a curve, C, Sym™(C) is already smooth; in higher
dimension it is not true.
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Other K3's

Finite subgroups of SL(2,7Z), up to conjugation in GL(2,7Z),
are 7,7, 7.4, Z¢ generated respectively by

(o) (v3) (07) ()
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Other K3's

Finite subgroups of SL(2,7Z), up to conjugation in GL(2,7Z),
are 7,7, 7.4, Z¢ generated respectively by

(o) (v3) (07) ()

Take an elliptic curve A and apply the above construction,
we obtain other special K 3-surfaces; in particular the
singularities of the quotient are du Val sings and they admit
a crepant resolution
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Finite subgroups of SL(2,7Z), up to conjugation in GL(2,7Z),
are 7,7, 7.4, Z¢ generated respectively by

(o) (v3) (07) ()

Take an elliptic curve A and apply the above construction,
we obtain other special K 3-surfaces; in particular the
singularities of the quotient are du Val sings and they admit
a crepant resolution

One can classify finite subgroups of SL(2,C) ( besides the
cyclic groups the dihedral groups, the binary tetrahedral,
octahedral and icosahedral groups); locally they give du
Val singularities. Therefore if the more general construction
apply we get other K3 surfaces.
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CY 3-folds

The following are, up to isomorphism, (non-trivial) finite
subgroups of SL(3,Z):

cyclic groups Z,, of rank a, fora = 2, 3, 4 and 6,

dihedral groups D,,, of rank 2a, for a = 2, 3, 4 and 6,
which have, respectively, 4, 3, 2 and 1 conjugacy
classes in GL(3,7Z)

the alternating group A, which has 3 conjugacy
classes in GL(3,7Z) (e.g. the tetrahedral group of
Isometries of the tetrahedron),

the symmetric group S, which has 3 conjugacy classes
in GL(3,7Z) (e.g. octahedral group of isometries of a
cube)
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CY 3-folds

Cyclic groups cannot occur in our assumptions (there is a
one dimensional fixed space).
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CY 3-folds

Cyclic groups cannot occur in our assumptions (there is a
one dimensional fixed space).

One can find crepant resolution of the quotients, either by
a case by case analysis (Roan and others) or via
Nakamura'’s I'-Hilbert schemes which realizes a crepant
resolution as the moduli space of I'-cluster of points.
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CY 3-folds

Cyclic groups cannot occur in our assumptions (there is a
one dimensional fixed space).

One can find crepant resolution of the quotients, either by
a case by case analysis (Roan and others) or via
Nakamura'’s I'-Hilbert schemes which realizes a crepant
resolution as the moduli space of I'-cluster of points.

Some of this groups which are not conjugate in GL(3,7Z)
are in GL(3,C); they give non-isomorphic CY 3- folds.
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Symplectic quotient

Let G < Sp(2n, C) be a finite subgroup which acts on C*"
preserving a symplectic form.

The quotient C*"/G is a symplectic variety, i.e. the smooth
part admits a holomorphic symplectic form ¢ such that its
pull back to any resolution extends to a holomorphic 2-form
(Beauville).
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Symplectic quotient

Let G < Sp(2n, C) be a finite subgroup which acts on C*"
preserving a symplectic form.

The quotient C*"/G is a symplectic variety, i.e. the smooth
part admits a holomorphic symplectic form ¢ such that its
pull back to any resolution extends to a holomorphic 2-form
(Beauville).

A proper morphism ¢ : X — V/G is a symplectic resolution
If X is smooth and ¢*(5) extends to a symplectic form on
X.
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Symplectic quotient

Let G < Sp(2n, C) be a finite subgroup which acts on C*"
preserving a symplectic form.

The quotient C*"/G is a symplectic variety, i.e. the smooth
part admits a holomorphic symplectic form ¢ such that its
pull back to any resolution extends to a holomorphic 2-form
(Beauville).

A proper morphism ¢ : X — V/G is a symplectic resolution
If X is smooth and ¢*(5) extends to a symplectic form on
X.

A resolution in this case is symplectic if and only if it is
crepant.
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Necessary conditions for the
existence of symplectic resolution

Theorem. If a symplectic resolution ¢ : X — V/G exists
then G is generated by symplectic reflections, i.e. elements
g such that codimV?9 = 2.
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Necessary conditions for the
existence of symplectic resolution

Theorem. If a symplectic resolution ¢ : X — V/G exists
then G is generated by symplectic reflections, i.e. elements
g such that codimV?9 = 2.

Theorem. A symplectic resolution is semi-small, i.e. for
every closed subvariety Z C X we have
2 codimZ > codimp(Z).
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Necessary conditions for the
existence of symplectic resolution

Theorem. If a symplectic resolution ¢ : X — V/G exists

then G is generated by symplectic reflections, i.e. elements
g such that codimV?9 = 2.

Theorem. A symplectic resolution is semi-small, i.e. for
every closed subvariety Z C X we have
2 codimZ > codimp(Z).

Notation: if equality holds 7 is called a maximal cycle.
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Examples

For example if pc : G — GL(V) = GL(n,C) is a
representation of a finite group then

p@p" G — Sp(V @ V*). the symplectic form preserved is
the identity in V ® V*.

If moreover pc preserves a non degenerate symmetric
2-form on V' then there is a GG-equivariant isomorphism
V ~ V*, this is the case when G Is a Weyl group acting on
the lattice of roots of a simple Lie algebra: it preserves the

Killing form.
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Examples

G =S5, and py: S,.1 — GL(n,7Z) be the standard

representation, i.e. the natural representation on Z"+1)
restricted to the invariant subspace e; + - - - + ¢, = 0.

Gom =21 x S, and pc : G, — GL(n,C) be the
natural representation, where 7Z; acts on C" diagonally
and S,, by permutations of the coordinates. It is an
Integral representation if m = 2.

G = Qg X Zs, the binary tetrahedral group, and
representations pc : G — GL(2,C):

po the standard arising from the embedding

G C SU(2),and p; := py® C;, for 5 = 1,2, where C; is
the multiplication by a third root of unity. The last two
are dual to each other.
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Existence of symplectic resolution

Theorem. Let G be a finite group, pc : G — GL(C™") an
irreducible complex representation. Then V. ® V*/G has a
symplectic resolution if and only if (G, pc) is as above.
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Existence of symplectic resolution

Theorem. Let G be a finite group, pc : G — GL(C™") an
irreducible complex representation. Then V. ® V*/G has a
symplectic resolution if and only if (G, pc) is as above.

A resolution In the first two cases can be obtained via the

Hilbert scheme construction. In the third case an explicit
resolution was constructed recently (Lehn-Sorger)
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Kummer constr. for the examples

Kummer construction can be applied to the first two cases
(the second with m = 2) taking A as an abelian surface
(i.e. d = 2).
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Kummer constr. for the examples

Kummer construction can be applied to the first two cases
(the second with m = 2) taking A as an abelian surface
(i.e. d = 2).

One obtains two series of symplectic manifolds
Kum™"(A) and Hilb"(K3)

constructed long ago by Beauville and Fujiki.

Together with two sporadic examples in dimension 6 and
10 (by O’'Grady) these are the only known examples of
symplectic manifolds.
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Kummer constr. for the examples

Kummer construction can be applied to the first two cases
(the second with m = 2) taking A as an abelian surface
(i.e. d = 2).

One obtains two series of symplectic manifolds
Kum™"(A) and Hilb"(K3)

constructed long ago by Beauville and Fujiki.

Together with two sporadic examples in dimension 6 and
10 (by O’'Grady) these are the only known examples of
symplectic manifolds.

The third example cannot work...
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non existence result

An important tool:

Theorem (Lefschetz) Let g : A — A be an endomorphism
with ¢(0) = 0 and let ng) be its tangent. The closed
analytic subvariety of A consisting of the fixed point of g,
denoted by Fix(g), has dimension equal to the multiplicity
of 1 as an eigenvalue of 7g). If it is zero dimensional then

|[Fiz(g)| = |det(1 —ng))[*.
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non existence result

An important tool:

Theorem (Lefschetz) Let g : A — A be an endomorphism
with ¢(0) = 0 and let ng) be its tangent. The closed
analytic subvariety of A consisting of the fixed point of g,
denoted by Fix(g), has dimension equal to the multiplicity
of 1 as an eigenvalue of 7g). If it is zero dimensional then

|[Fiz(g)| = |det(1 —ng))[*.

We use also semismallness of symplectic resolution: in
particular if dim > 4 there are no isolated quotient
symplectic singularities.

Varieta simplettiche olomorfecostruzioni classiche e calcolo deali invarianti — p. 20/38



non existence result

Lattice of subgroups
BT
Q Z

Z4 Z
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non existence result

Lattice of subgroups

Fixed points

BT :

Q Zt : o4

\ \

Z4 7% 24 dim = 2
\ \

(-1) 2%
1
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non existence result

Lattice of subgroups

Fixed points

BT :

Q Zt : o4

\ \

Z4 7% 24 dim = 2
\ \

(—1) 28
1

Fix(—1) = U;(Fiz(Z§)— Fix(BT))UFix(BT), i.e. 28 — 4(24) 3s
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Computing cohomology

Two main ingredients, namely
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Computing cohomology

Two main ingredients, namely

- Virtual Poincaré polynomial (or motivic integration)
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Computing cohomology

Two main ingredients, namely
- Virtual Poincaré polynomial (or motivic integration)
+ McKay correspondence
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Computing cohomology

Two main ingredients, namely
- Virtual Poincaré polynomial (or motivic integration)
+ McKay correspondence
= Principle
4 The answer to any well posed
- guestion about the geometry

” of X Is the G-equivariant
X—Y=A4/G geometry of A.

Varieta simplettiche olomorfecostruzioni classiche e calcolo deali invarianti — p. 22/38



Virtual Poincaré polynomial

Px (t) virtual Poincaré polynomial is defined by:

Px(t) = Yo bi(X) ¢ € Z[t],

If X Is compact manifold, n = dimX, t is a formal
variable and b;(X) = dimH% (X ) are the Betti
numbers.

If Y is a closed algebraic subsetof X and U := X \ Y

then
Px(t) = Py(t) + Pyl(t).

Remark that the virtual Poincaré is actually the standard
Poincaré polynomial also if X is compact and has quotient
singularities
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(- Poincaré polynomial

Consider ring R(G) of complex representations of G;

by dp, p ® m and p A m we denote the sum of d copies, the
m-th tensor and alternating power of p.

We have a map u : R(G) — Z which to a representation p
assigns the rank of its maximal trivial subrepresentation.
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(- Poincaré polynomial

Consider ring R(G) of complex representations of G;

by dp, p ® m and p A m we denote the sum of d copies, the
m-th tensor and alternating power of p.

We have a map u : R(G) — Z which to a representation p
assigns the rank of its maximal trivial subrepresentation.

Given action of G on variety Z define GG-Poincare
polynomial P, (t) € R(G)|t] whose coefficient at ¢; is the

vector space H'(Z,C') with the induced G-action.
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(- Poincaré polynomial

Consider ring R(G) of complex representations of G;

by dp, p ® m and p A m we denote the sum of d copies, the
m-th tensor and alternating power of p.

We have a map u : R(G) — Z which to a representation p
assigns the rank of its maximal trivial subrepresentation.

Given action of G on variety Z define GG-Poincare
polynomial P, (t) € R(G)|t] whose coefficient at ¢; is the

vector space H'(Z,C') with the induced G-action.

In our set-up Par () = >0 (2d - pe)™ - #

ForY = A" /ps we have Py (t) = po(Par (1))
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McKay correspondence

McKay conjecture: Let G < SL(V') be a finite subgroup
and assume that there exists a crepant resolution

X — V/@G. Then the homology H, (X, Q) admits a "natural”
basis numbered by conjugacy classes of elements g € G.
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McKay correspondence

McKay conjecture: Let G < SL(V') be a finite subgroup
and assume that there exists a crepant resolution

X — V/@G. Then the homology H, (X, Q) admits a "natural”
basis numbered by conjugacy classes of elements g € G.

The conjecture restricted to the dimension of H,(X,Q) is
true (Batyrev and Kontsevich-Denef-Loser).
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McKay correspondence

McKay conjecture: Let G < SL(V') be a finite subgroup
and assume that there exists a crepant resolution

X — V/@G. Then the homology H, (X, Q) admits a "natural”
basis numbered by conjugacy classes of elements g € G.

The conjecture restricted to the dimension of H,(X,Q) is
true (Batyrev and Kontsevich-Denef-Loser).

In the case G < Sp(V) it has been proved by Kaledin that
maximal cycles (i.e. 2 codim(Z) = codimp(Z)) fom a basis.
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Strata

Y ([H]) C Y: orbits of points whose isotropy is in the
conjugacy class of a subgroup H < G.

X ([H]) the inverse image.

The restriction X (|H]) — Y (|H]) is a locally trivial fiber bdl
with fiber F'(|H]) which embeds in the following diagram
(W(H) = N(H)/H is the Weil group and (A")¥ are the set of point
whose stabilizer is H).

(AN x () /W ([H]) <— X ([H))

Y ([H]) Y ([H])
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ldea of computation

Poincaré of the strata (Let Ax be a component of (A"){)

Paxrn,wix = Pagewi  Prim),wy -
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ldea of computation

Poincaré of the strata (Let Ax be a component of (A"){)
Paxrn,wix = Pagewi  Prim),wy -

P4, w, 1s obtained computing the cohomology of A
Invariant via Wy

Pa,w,(t) = 3770(2d - g )M -t = (1 + t)?¥1< where

nk : Wk — GL(rg,C) is a representation of Wy induced
from pc.
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ldea of computation

Poincaré of the strata (Let Ax be a component of (A"){)

Paxrn,wix = Pagewi  Prim),wy -

P4, w, 1s obtained computing the cohomology of A
Invariant via Wy
Pa,w,(t) = 3770(2d - g )M -t = (1 + t)?¥1< where

k- Wk — GL(rg,C) is a representation of W induced
from pc.

By McKay the group W (H) acts on the cohomology of
F(H) as W(H) acts on the conjugacy classes of H.
So Prmyw, IS determined by the adjoint action of W, on

conjugacy classes of elements in H, which is
w([h]m) — [whw™]u.
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ldea of computation

The virtual Poincaré polynomial of X (|H]) is obtained
taking out the contribution of the lower dimensional strata

/\

over the difference Y (|H|) \ Y (|H]). Take therefore H' > H
a subgroup .... .
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Cohomology of a K3 surface

L et A be a one dimensional torus and
—1
p(Zg) =< ( (1) ) ) >C SL(2,7).

In SL(2,C) p = e + €, € = Sixth primitive root of unity.
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Cohomology of a K3 surface

Let A be a one dimensional torus and
—1
p(Zg) =< ( (1) ) ) >C SL(2,7).
In SL(2,C) p = e + €, € = Sixth primitive root of unity.

p®p=2-1+ €+ e hence the space of invariant (1, 1)
forms is of dimension 2.
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Cohomology of a K3 surface

L et A be a one dimensional torus and
—1
p(Zg) =< ( (1) ) ) >C SL(2,7).

In SL(2,C) p = e + €, € = Sixth primitive root of unity.

p®p=2-1+ €+ e hence the space of invariant (1, 1)
forms is of dimension 2.

We add to it the contribution of cohomology coming from
resolving singular points of the quotient.
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Cohomology of a K3 surface

g # fix pts # sing pts resolution Poincaré
0 1 1 1 XX YN 1+ 5t
1 1
0 1
( 1 1 ) 9 4 oo 14 2¢
—1 0
( 0 1 ) 16 5 ° 141

Varieta simplettiche olomorfecostruzioni classiche e calcolo deali invarianti — p. 30/38



Cohomology of a K3 surface

g # fix pts # sing pts resolution Poincaré
0 1 1 1 XX YN 1+ 5t
1 1
0 1
(__1__1> 9 4 oo 14 2¢
—1 0
( 0 1 ) 16 5 ° 141

The dimension of H'! for a K3 surface is:

2+ 1 xXx54+4x2+5x1=20
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Cohomology of a CY mfd

Sy C SL(3,7Z) as the isometry of a cube (octahedral group)
A an elliptic curve.
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Cohomology of a CY mfd

Sy C SL(3,7Z) as the isometry of a cube (octahedral group)
A an elliptic curve.

g Fiz(g) # cmpnts ~ (g) W(g) Y ({g)) Poincaré
—1 0
2e1 =0 " 5
O —1 O 16 2o Zio X Lo 6 x P1 1+t
2e20 = 0
0 0 1
0 -1 0 )
e1 = es )
1 0 0 4 Z4 Zs AxP' 14 (2+e)
2e1 =0
0o 0 1)
0 1 0 )
€1 =e€2 1 2
1 0 0 4 Zio Zio 4 x P 14+t
2e3 =0
0 0 —1 )
0O 0 1
e1 — €
1 0 0 P 1 Zs Zs 1x P! 14 (14e)
el = e3
O 1 O
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Cohomology of a CY mfd

1-dim non-free point sets meet at {p € A% : 2p = 0} whose
cardinality is 4° = 64
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Cohomology of a CY mfd

1-dim non-free point sets meet at {p € A% : 2p = 0} whose
cardinality is 4° = 64

subgroup fixed setin {2p = 0} # fixed pts  # sing pts  Poincaré
Dy e1 ey F£eszFer 24 4 1 + 3t2
3x Dg e =ej#ek {i,5,k} ={1,2,3} 36 12 1 + 4t2

G =54 e1 = eg = e3 4 4 1 + 4¢2
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Cohomology of a CY mfd

3-dimensional stratum

S3(t) =1+ t*+ 43 +t* +t° — (15(1 + t* — 4) + 20)
1-dimensional strata

S12(t) := 10((1 + t*)(1 + ¢*) — 4(1 + ¢%))

S13(t) := ((t* +2t3 4+ 262 + 1) — 4(1 4+ t))

S14(t) == 4((2t* 4 2% + 3t + 1) — 4(1 + 2t%))
O-dimensional stratum

SO0(t) :=4(1 + 3t%) + (124 4)(1 + 4¢?)

Calculating the sum
P(t):=S3(t)+S12(t)+S13(t)+S14(t)+S0(t) we get:

Px(t) =t°+ 20" + 14> +20* + 1.
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Cohomology of Kum™(A), Hilb"(K3)

Let A be a two dimensional torus.
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Cohomology of Kum™(A), Hilb"(K3)

Let A be a two dimensional torus.

The Poincaré polynomial of the Beauville’'s generalized
Kummer variety, i.e. a crepant resolution of A™/S,, .1 IS :

n=2:
B4+ T8 85 + 108t + 82 + T2 + 1
n=3J3.

P70 482 4+51 3 +56¢t +458t0+56°+51 t*+8 3+ 712 +1
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Cohomology of Kum™(A), Hilb"(K3)

Let A be a two dimensional torus.

The Poincaré polynomial of the Beauville’'s generalized
Kummer variety, i.e. a crepant resolution of A™/S,, .1 IS :

n=2:
B4+ T8 85 + 108t + 82 + T2 + 1
n=3J3.

P70 482 4+51 3 +56¢t +458t0+56°+51 t*+8 3+ 712 +1

The Poincaré polynomial of a crepant resolution of
A" 75 xS, 1S :

n =2

t8 + 23t% + 276t* + 23t* + 1
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Local symplectic resolutions

Let 7 : X — Y be a proper symplectic elementary
contraction with X smooth and dimX = 4.
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Local symplectic resolutions

Let 7 : X — Y be a proper symplectic elementary
contraction with X smooth and dimX = 4.

Theorem [Wi-WI]. If 7 is small then = is locally analytically
Isomorphic to the collapsing of the zero section in the
cotangent bundle of P?; in particular it admits a Mukai flop
(and it stays smooth !).
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Let 7 : X — Y be a proper symplectic elementary
contraction with X smooth and dimX = 4.

Theorem [Wi-WI]. If 7 is small then = is locally analytically
Isomorphic to the collapsing of the zero section in the
cotangent bundle of P?; in particular it admits a Mukai flop
(and it stays smooth !).

If Y = C*/G with G < Sp(4) a finite subgroup we know that
a (hilb type) symplectic resolution X — Y exists if

G = D¢ := Z3 X 7y = o3 oOr if G = (I')** x Zy where

[' < SL(2).

The resolution is elementary Iin the first case and in the
second when I' = 1.
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Local symplectic resolutions

Therefore we know 3 proper symplectic elementary
contractions X — Y with X smooth and dim X = 4,
namely:

1) t
2) t
3) t

ne (unigue) sma
ne (unigque) reso

ne (unique) reso

| symplectic contraction
ution of C* /o3
ution of C*/Z,
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Local symplectic resolutions

Therefore we know 3 proper symplectic elementary
contractions X — Y with X smooth and dim X = 4,
namely:

1) the (unique) small symplectic contraction

2) the (unique) resolution of C* /o5

3) the (unique) resolution of C*/Z,

Conjecture Are they the only ones?
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Local symplectic resolutions

Theorem A proper symplectic elementary contraction
m: X — Y with X smooth and dimX = 4 i1s a Mori Dream
Space (that is any movable divisor can be made nef and

semiample after a finite number of SQM (small
guasifactorial modification)).
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Local symplectic resolutions

Theorem A proper symplectic elementary contraction
m: X — Y with X smooth and dimX = 4 i1s a Mori Dream
Space (that is any movable divisor can be made nef and

semiample after a finite number of SQM (small
guasifactorial modification)).

In fact it holds
1) Cone and contraction theorems (Mori-Kawamata)

) Existence of Flops (and of SQM) (Wi-Wh)
i) Termination of Flops (Matsuki)
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Example

Let 7 : X — Y be the Hilb type symplectic resolution of
Y = 64/((23)2 X Zg)
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Example

Let 7 : X — Y be the Hilb type symplectic resolution of
Y = 64/((23)2 X Zg)

... or the resolution of Y = C*/(03 x Zs)
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