Varietá simplettiche olomorfe costruzioni classiche e calcolo degli invarianti

Marco Andreatta

Dipartimento di Matematica
Universitá di Trento

Introduction

Theorem of Berger: the holonomy group of a connected Riemanian manifold (M, g), not symmetric, irreducible and simply connected, is one of the following

```
SO(n),
U(m)\subsetSO(2m),
SU(m)\subsetSO(2m),m\geq3,
Sp(r)\subsetSO(4r),
Sp(1)Sp(r)\subsetSO(4r),r\geq2,
G}\subset\subsetSO(7
Spin(7)\subset SO(8)
```


Holonomy characterization

If we fix the holonomy group we impose certain parallel tensor fields; smaller is the holonomy more special is the manifold.

$$
S p(r) \subset S U(2 r), S U(m) \subset U(m) \subset S O(2 m)
$$

Holonomy characterization

If we fix the holonomy group we impose certain parallel tensor fields; smaller is the holonomy more special is the manifold.
$S p(r) \subset S U(2 r), S U(m) \subset U(m) \subset S O(2 m)$
$H \subset U(m) \subset S O(2 m):$
iff H commutes with endomorphism $v \rightarrow i v$ of $\mathbb{R}^{2 m}=\mathbb{C}^{m}$
iff parallel endomorphism J of $T(M), J^{2}=-I$
iff M has a Kähler complex structure J.

Calabi Yau

$H \subset S U(m):$
iff $H \subset U(m)$ and H preserves the \mathbb{C}-multilinear alternating
m-form det : $\mathbb{C}^{m} \rightarrow C$
iff M is Kähler and there exists an holomorphic parallel m-form $\omega \neq 0$
The viceversa follows from Yau's theorem.

Hyperkähler-Symplectic manifolds

$$
\begin{aligned}
& S p(r):=U(r, \mathbb{H})<G L(r, \mathbb{H}) \text { preserving the hermitian form } \\
& \psi(x, y)=\Sigma x_{i} \bar{y}_{i}
\end{aligned}
$$

Hyperkähler-Symplectic manifolds

$S p(r):=U(r, \mathbb{H})<G L(r, \mathbb{H})$ preserving the hermitian form $\psi(x, y)=\Sigma x_{i} \bar{y}_{i}$
"Hamilton": $\mathbb{H}=\mathbb{R}+\mathbb{R} i+\mathbb{R} j+\mathbb{R} k, \mathbb{H}^{r} \equiv \mathbb{R}^{4 r}$.
$S p(r)$ is the subgroup of $O\left(\mathbb{R}^{4 r}\right)$ commuting with i, j, k. If $H \subset S p(r)$ then M has parallel complex structures I, J, K and it is called hyperkähler.
(actually a sphere $S^{2}=\left\{a I+b J+c K: a^{2}+b^{2}+c^{2}=1\right\}$.)

Hyperkähler-Symplectic manifolds

$S p(r):=U(r, \mathbb{H})<G L(r, \mathbb{H})$ preserving the hermitian form $\psi(x, y)=\Sigma x_{i} \bar{y}_{i}$
"Hamilton": $\mathbb{H}=\mathbb{R}+\mathbb{R} i+\mathbb{R} j+\mathbb{R} k, \mathbb{H}^{r} \equiv \mathbb{R}^{4 r}$.
$S p(r)$ is the subgroup of $O\left(\mathbb{R}^{4 r}\right)$ commuting with i, j, k. If $H \subset S p(r)$ then M has parallel complex structures I, J, K and it is called hyperkähler. (actually a sphere $S^{2}=\left\{a I+b J+c K: a^{2}+b^{2}+c^{2}=1\right\}$.)
"Cayley": $\mathbb{C}=\mathbb{R}+\mathbb{R} i, \mathbb{H}=\mathbb{C}(j)$ with $j z=\bar{z} j ; \mathbb{H} \equiv \mathbb{C}^{2 r}$. $\psi=h+\varphi j: h$ is \mathbb{C}-hermitian and φ is \mathbb{C} bilinear alternating. Thus $S p(r)=U(2 r, \mathbb{C}) \cap S p(2 r, \mathbb{C})$ and if $H \subset S p(r)$ then M has a complex kähler structure + a parallel holomorphic symplectic 2 -form φ, unique up to a scalar.

Bogomolov decomposition theorem

Theorem Let X be a compact Kähler manifold with $c_{1}(X)=0$. Then X has a finite unramified cover Y such that

$$
Y=Z \times \Pi S_{i} \times \Pi C_{j}
$$

where

- Z is a a complex torus

ब each S_{i} is a simply connected holomorphic symplectic manifold with $H^{2}\left(S_{i}, \mathcal{O}_{S_{i}}\right)=1$
ब each C_{i} is a simply connected Calabi Yau manifold with $H^{2}\left(C_{i}, \mathcal{O}_{C_{i}}\right)=0$

Example of Symplectic-Hyperkähler

$r=1, S p(1)=S U(2):$
M is a compact complex surface with a non zero holomorphic 2 -form and $\pi_{1}=0$ (assume only $b_{1}=0$). They are the so called $K 3$-surfaces.
For instance a quartic in \mathbb{P}^{3}. They are all deformations of each others, thus all diffeomorphic and with $\pi_{1}=0$.

Example of Symplectic-Hyperkähler

$r=1, S p(1)=S U(2):$
M is a compact complex surface with a non zero holomorphic 2 -form and $\pi_{1}=0$ (assume only $b_{1}=0$). They are the so called $K 3$-surfaces.
For instance a quartic in \mathbb{P}^{3}. They are all deformations of each others, thus all diffeomorphic and with $\pi_{1}=0$.
Kummer surfaces Take an abelian surface A and consider the action of \mathbb{Z}_{2} on A by involution $a \rightarrow-a$. The quotient has 16 simple double points. In particular it admits a crepant resolution $X \rightarrow Y / \mathbb{Z}_{2}, X$ is a $K 3$-surface (called Kummer).

(Generalized) Kummer construction

Take an integral (irreducible) representation of a finite group $\rho_{\mathbb{Z}}: G \rightarrow G L(r, \mathbb{Z})$.
© Take an abelian variety A of dimension d and extend ρ to $\rho_{A}=\rho_{\mathbb{Z}} \otimes_{\mathbb{Z}} A: G \rightarrow \operatorname{Aut}\left(A^{r}\right)$.
${ }^{6}$ If d not even then assume $\rho_{\mathbb{Z}}: G \rightarrow S L(r, \mathbb{Z})$.
© The representation on $T A^{r}$ and $H^{1}\left(A^{r}, \mathbb{C}\right)$ is $d \cdot \rho_{\mathbb{C}}$.
© Take the quotient $Y=A^{r} / G$, find a crepant resolution $X \rightarrow Y$, get a complex manifold with $H^{1}(X, \mathbb{C})=0$ and $K_{X}=0$, i.e. a Calabi-Yau or a Symplectic manifold.

More general construction

More generally:

- Consider a finite group of automorphisms of an abelian variety A, i.e. $G<\operatorname{Aut}(A)$
- The tangent action at the unit of A is a complex representation of G, that is $\rho: G \rightarrow G L(T A)$.
- The same representation is in cohomology $\rho: G \rightarrow G L\left(H^{1}(A, \mathbb{C})\right)$.
© Want trivial invariant subspace and $\rho(G)<S L\left(H^{1}(A, \mathbb{C})\right)$

Problem: existence of a crepant

 resolutionOn dimension 2 and 3 we know a lot about crepant resolutions but this is not the case in higher dimensions.

For solvable groups we can take towers of resolutions of abelian singularities, provided at each step we get an equivariant one.
Via Hilbert schemes: for a smooth surface S the Hilbert scheme $H i l b^{n}(S)$ provides a crepant resolution $H_{i l b^{n}}(S) \rightarrow \operatorname{Sym}^{n}(S)$ (classical, Fogarty). . For a curve, $C, S^{\prime 2} m^{n}(C)$ is already smooth; in higher dimension it is not true.

Other K3's

Finite subgroups of $S L(2, \mathbb{Z})$, up to conjugation in $G L(2, \mathbb{Z})$, are $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}, \mathbb{Z}_{6}$ generated respectively by

$$
\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right)
$$

Other $K 3$'s

Finite subgroups of $S L(2, \mathbb{Z})$, up to conjugation in $G L(2, \mathbb{Z})$, are $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}, \mathbb{Z}_{6}$ generated respectively by

$$
\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right)
$$

Take an elliptic curve A and apply the above construction, we obtain other special $K 3$-surfaces; in particular the singularities of the quotient are du Val sings and they admit a crepant resolution

Other $K 3$'s

Finite subgroups of $S L(2, \mathbb{Z})$, up to conjugation in $G L(2, \mathbb{Z})$, are $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}, \mathbb{Z}_{6}$ generated respectively by

$$
\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right)
$$

Take an elliptic curve A and apply the above construction, we obtain other special $K 3$-surfaces; in particular the singularities of the quotient are du Val sings and they admit a crepant resolution
One can classify finite subgroups of $S L(2, \mathbb{C})$ (besides the cyclic groups the dihedral groups, the binary tetrahedral, octahedral and icosahedral groups); locally they give du Val singularities. Therefore if the more general construction apply we get other $K 3$ surfaces.

CY 3-folds

The following are, up to isomorphism, (non-trivial) finite subgroups of $S L(3, \mathbb{Z})$:
© cyclic groups \mathbb{Z}_{a}, of rank a, for $a=2,3,4$ and 6,
© dihedral groups $D_{2 a}$, of rank $2 a$, for $a=2,3,4$ and 6, which have, respectively, 4, 3, 2 and 1 conjugacy classes in $G L(3, \mathbb{Z})$

6 the alternating group A_{4} which has 3 conjugacy classes in $G L(3, \mathbb{Z})$ (e.g. the tetrahedral group of isometries of the tetrahedron),

6 the symmetric group S_{4} which has 3 conjugacy classes in $G L(3, \mathbb{Z})$ (e.g. octahedral group of isometries of a cube)

CY 3-folds

Cyclic groups cannot occur in our assumptions (there is a one dimensional fixed space).

CY 3-folds

Cyclic groups cannot occur in our assumptions (there is a one dimensional fixed space).
One can find crepant resolution of the quotients, either by a case by case analysis (Roan and others) or via Nakamura's Γ-Hilbert schemes which realizes a crepant resolution as the moduli space of Γ-cluster of points.

CY 3-folds

Cyclic groups cannot occur in our assumptions (there is a one dimensional fixed space).
One can find crepant resolution of the quotients, either by a case by case analysis (Roan and others) or via Nakamura's Γ-Hilbert schemes which realizes a crepant resolution as the moduli space of Γ-cluster of points.
Some of this groups which are not conjugate in $G L(3, \mathbb{Z})$ are in $G L(3, \mathbb{C})$; they give non-isomorphic CY 3 - folds.

Symplectic quotient

Let $G<S p(2 n, \mathbb{C})$ be a finite subgroup which acts on $\mathbb{C}^{2 n}$ preserving a symplectic form.
The quotient $\mathbb{C}^{2 n} / G$ is a symplectic variety, i.e. the smooth part admits a holomorphic symplectic form σ such that its pull back to any resolution extends to a holomorphic 2 -form (Beauville).

Symplectic quotient

Let $G<S p(2 n, \mathbb{C})$ be a finite subgroup which acts on $\mathbb{C}^{2 n}$ preserving a symplectic form.
The quotient $\mathbb{C}^{2 n} / G$ is a symplectic variety, i.e. the smooth part admits a holomorphic symplectic form σ such that its pull back to any resolution extends to a holomorphic 2 -form (Beauville).
A proper morphism $\varphi: X \rightarrow V / G$ is a symplectic resolution if X is smooth and $\varphi^{*}(\hat{\sigma})$ extends to a symplectic form on X.

Symplectic quotient

Let $G<S p(2 n, \mathbb{C})$ be a finite subgroup which acts on $\mathbb{C}^{2 n}$ preserving a symplectic form.
The quotient $\mathbb{C}^{2 n} / G$ is a symplectic variety, i.e. the smooth part admits a holomorphic symplectic form σ such that its pull back to any resolution extends to a holomorphic 2 -form (Beauville).
A proper morphism $\varphi: X \rightarrow V / G$ is a symplectic resolution if X is smooth and $\varphi^{*}(\hat{\sigma})$ extends to a symplectic form on X.
A resolution in this case is symplectic if and only if it is crepant.

Necessary conditions for the existence of symplectic resolution

Theorem. If a symplectic resolution $\varphi: X \rightarrow V / G$ exists then G is generated by symplectic reflections, i.e. elements g such that $\operatorname{codimV}^{g}=2$.

Necessary conditions for the existence of symplectic resolution

Theorem. If a symplectic resolution $\varphi: X \rightarrow V / G$ exists then G is generated by symplectic reflections, i.e. elements g such that $\operatorname{codimV}^{g}=2$.

Theorem. A symplectic resolution is semi-small, i.e. for every closed subvariety $Z \subset X$ we have $2 \operatorname{codim} Z \geq \operatorname{codim} \varphi(Z)$.

Necessary conditions for the existence of symplectic resolution

Theorem. If a symplectic resolution $\varphi: X \rightarrow V / G$ exists then G is generated by symplectic reflections, i.e. elements g such that $\operatorname{codimV}^{g}=2$.

Theorem. A symplectic resolution is semi-small, i.e. for every closed subvariety $Z \subset X$ we have
$2 \operatorname{codim} Z \geq \operatorname{codim} \varphi(Z)$.
Notation: if equality holds Z is called a maximal cycle.

Examples

For example if $\rho_{\mathbb{C}}: G \rightarrow G L(V)=G L(n, \mathbb{C})$ is a representation of a finite group then $\rho \oplus \rho^{*}: G \rightarrow S p\left(V \oplus V^{*}\right)$: the symplectic form preserved is the identity in $V \otimes V^{*}$.
If moreover $\rho_{\mathbb{C}}$ preserves a non degenerate symmetric 2 -form on V then there is a G-equivariant isomorphism $V \simeq V^{*}$; this is the case when G is a Weyl group acting on the lattice of roots of a simple Lie algebra: it preserves the Killing form.

Examples

© $G=S_{n+1}$ and $\rho_{\mathbb{Z}}: S_{n+1} \rightarrow G L(n, \mathbb{Z})$ be the standard representation, i.e. the natural representation on $\mathbb{Z}^{(n+1)}$ restricted to the invariant subspace $e_{0}+\cdots+e_{r}=0$.
(6) $G_{n, m}=\mathbb{Z}_{m}^{n} \rtimes S_{n}$ and $\rho_{\mathbb{C}}: G_{n, m} \rightarrow G L(n, \mathbb{C})$ be the natural representation, where \mathbb{Z}_{m}^{r} acts on \mathbb{C}^{r} diagonally and S_{n} by permutations of the coordinates. It is an integral representation if $m=2$.
6 $G=Q_{8} \rtimes \mathbb{Z}_{3}$, the binary tetrahedral group, and representations $\rho_{\mathbb{C}}: G \rightarrow G L(2, \mathbb{C})$:
ρ_{0} the standard arising from the embedding
$G \subset S U(2)$, and $\rho_{j}:=\rho_{0} \otimes \mathbb{C}_{j}$, for $j=1,2$, where \mathbb{C}_{j} is the multiplication by a third root of unity. The last two are dual to each other.

Existence of symplectic resolution

Theorem. Let G be a finite group, $\rho_{\mathbb{C}}: G \rightarrow G L\left(\mathbb{C}^{n}\right)$ an irreducible complex representation. Then $V \oplus V^{*} / G$ has a symplectic resolution if and only if (G, ρ_{C}) is as above.

Existence of symplectic resolution

Theorem. Let G be a finite group, $\rho_{\mathbb{C}}: G \rightarrow G L\left(\mathbb{C}^{n}\right)$ an irreducible complex representation. Then $V \oplus V^{*} / G$ has a symplectic resolution if and only if (G, ρ_{C}) is as above.

A resolution in the first two cases can be obtained via the Hilbert scheme construction. In the third case an explicit resolution was constructed recently (Lehn-Sorger)

Kummer constr. for the examples

Kummer construction can be applied to the first two cases (the second with $m=2$) taking A as an abelian surface (i.e. $d=2$).

Kummer constr. for the examples

Kummer construction can be applied to the first two cases (the second with $m=2$) taking A as an abelian surface (i.e. $d=2$).

One obtains two series of symplectic manifolds

$$
\operatorname{Kum}^{n}(A) \text { and } \operatorname{Hilb}^{n}(K 3)
$$

constructed long ago by Beauville and Fujiki.
Together with two sporadic examples in dimension 6 and 10 (by O'Grady) these are the only known examples of symplectic manifolds.

Kummer constr. for the examples

Kummer construction can be applied to the first two cases (the second with $m=2$) taking A as an abelian surface (i.e. $d=2$).

One obtains two series of symplectic manifolds

$$
\operatorname{Kum}^{n}(A) \text { and } \operatorname{Hilb}^{n}(K 3)
$$

constructed long ago by Beauville and Fujiki.
Together with two sporadic examples in dimension 6 and 10 (by O'Grady) these are the only known examples of symplectic manifolds.

The third example cannot work...

non existence result

An important tool:
Theorem (Lefschetz) Let $g: A \rightarrow A$ be an endomorphism with $g(0)=0$ and let $\left.\eta_{(} g\right)$ be its tangent. The closed analytic subvariety of A consisting of the fixed point of g, denoted by $\operatorname{Fix}(g)$, has dimension equal to the multiplicity of 1 as an eigenvalue of $\eta_{(} g$). If it is zero dimensional then $|F i x(g)|=\left|\operatorname{det}\left(1-\eta_{(g)}\right)\right|^{2}$.

non existence result

An important tool:
Theorem (Lefschetz) Let $g: A \rightarrow A$ be an endomorphism with $g(0)=0$ and let $\left.\eta_{(} g\right)$ be its tangent. The closed analytic subvariety of A consisting of the fixed point of g, denoted by $\operatorname{Fix}(g)$, has dimension equal to the multiplicity of 1 as an eigenvalue of $\left.\eta_{(} g\right)$. If it is zero dimensional then $|F i x(g)|=\left|\operatorname{det}\left(1-\eta_{(g)}\right)\right|^{2}$.

We use also semismallness of symplectic resolution: in particular if $\operatorname{dim} \geq 4$ there are no isolated quotient symplectic singularities.

non existence result

Lattice of subgroups

non existence result

Lattice of subgroups

Fixed points

non existence result

Lattice of subgroups

Fixed points

$$
F i x(-1)=\cup_{j}\left(F i x\left(\mathbb{Z}_{6}^{i}\right)-F i x(B T)\right) \cup F i x(B T) \text {, i.e. } .^{8}=4\left(2^{4}\right)-3 s
$$

Computing cohomology

Two main ingredients, namely

Computing cohomology

Two main ingredients, namely

- Virtual Poincaré polynomial (or motivic integration)

Computing cohomology

Two main ingredients, namely

- Virtual Poincaré polynomial (or motivic integration)
+ McKay correspondence

Computing cohomology

Two main ingredients, namely

- Virtual Poincaré polynomial (or motivic integration)
+ McKay correspondence
= Principle

The answer to any well posed question about the geometry of X is the G-equivariant geometry of A.

Virtual Poincaré polynomial

$P_{X}(t)$ virtual Poincaré polynomial is defined by:

- $P_{X}(t)=\sum_{i=0}^{2 n} b_{i}(X) t^{i} \in \mathbb{Z}[t]$,
if X is compact manifold, $n=\operatorname{dim} X, t$ is a formal variable and $b_{i}(X)=\operatorname{dim} H_{D R}^{i}(X)$ are the Betti numbers.
6 If Y is a closed algebraic subset of X and $U:=X \backslash Y$ then

$$
P_{X}(t)=P_{Y}(t)+P_{U}(t) .
$$

Remark that the virtual Poincaré is actually the standard Poincaré polynomial also if X is compact and has quotient singularities

G- Poincaré polynomial

Consider ring $R(G)$ of complex representations of G; by $d \cdot \rho, \rho \otimes m$ and $\rho \wedge m$ we denote the sum of d copies, the m-th tensor and alternating power of ρ.
We have a map $\mu_{0}: R(G) \rightarrow Z$ which to a representation ρ assigns the rank of its maximal trivial subrepresentation.

G- Poincaré polynomial

Consider ring $R(G)$ of complex representations of G; by $d \cdot \rho, \rho \otimes m$ and $\rho \wedge m$ we denote the sum of d copies, the m-th tensor and alternating power of ρ.
We have a map $\mu_{0}: R(G) \rightarrow Z$ which to a representation ρ assigns the rank of its maximal trivial subrepresentation.
Given action of G on variety Z define G-Poincaré polynomial $P_{Z, G}(t) \in R(G)[t]$ whose coefficient at t_{i} is the vector space $H^{i}(Z, C)$ with the induced G-action.

G - Poincaré polynomial

Consider ring $R(G)$ of complex representations of G; by $d \rho, \rho \otimes m$ and $\rho \wedge m$ we denote the sum of d copies, the m-th tensor and alternating power of ρ.
We have a map $\mu_{0}: R(G) \rightarrow Z$ which to a representation ρ assigns the rank of its maximal trivial subrepresentation.
Given action of G on variety Z define G-Poincaré polynomial $P_{Z, G}(t) \in R(G)[t]$ whose coefficient at t_{i} is the vector space $H^{i}(Z, C)$ with the induced G-action.
In our set-up $P_{A^{r}, G}(t)=\sum_{i=0}^{2 r d}\left(2 d \cdot \rho_{\mathbb{C}}\right)^{\wedge i} \cdot t^{i}$
For $Y=A^{r} / \rho_{A}$ we have $P_{Y}(t)=\mu_{0}\left(P_{A^{r}, G}(t)\right)$

McKay correspondence

McKay conjecture: Let $G<S L(V)$ be a finite subgroup and assume that there exists a crepant resolution $X \rightarrow V / G$. Then the homology $H_{*}(X, \mathbb{Q})$ admits a "natural" basis numbered by conjugacy classes of elements $g \in G$.

McKay correspondence

McKay conjecture: Let $G<S L(V)$ be a finite subgroup and assume that there exists a crepant resolution $X \rightarrow V / G$. Then the homology $H_{*}(X, \mathbb{Q})$ admits a "natural" basis numbered by conjugacy classes of elements $g \in G$. The conjecture restricted to the dimension of $H_{*}(X, \mathbb{Q})$ is true (Batyrev and Kontsevich-Denef-Loser).

McKay correspondence

McKay conjecture: Let $G<S L(V)$ be a finite subgroup and assume that there exists a crepant resolution $X \rightarrow V / G$. Then the homology $H_{*}(X, \mathbb{Q})$ admits a "natural" basis numbered by conjugacy classes of elements $g \in G$. The conjecture restricted to the dimension of $H_{*}(X, \mathbb{Q})$ is true (Batyrev and Kontsevich-Denef-Loser).
In the case $G<S p(V)$ it has been proved by Kaledin that maximal cycles (i.e. $2 \operatorname{codim}(Z)=\operatorname{codim} \varphi(Z)$) fom a basis.

Idea of computation

Strata

$Y([H]) \subset Y$: orbits of points whose isotropy is in the conjugacy class of a subgroup $H<G$.
$X([H])$ the inverse image.
The restriction $X([H]) \rightarrow Y([H])$ is a locally trivial fiber bdl with fiber $F([H])$ which embeds in the following diagram $\left(W(H)=N(H) / H\right.$ is the Weil group and $\left(A^{r}\right)_{0}^{H}$ are the set of point whose stabilizer is H).

$$
\begin{gathered}
\left(\overline{\left(A^{r}\right)_{0}^{H}} \times F([H])\right) / W([H]) \longleftarrow X([H]) \\
\frac{\downarrow}{Y([H])} \longleftarrow
\end{gathered}
$$

Idea of computation

Poincaré of the strata (Let A_{K} be a component of $\left.\left(A^{r}\right)_{0}^{H}\right)$

$$
P_{\left(A_{K} \times F(H)\right), W_{K}}=P_{A_{K}, W_{K}} \cdot P_{F(H), W_{K}} .
$$

Idea of computation

Poincaré of the strata (Let A_{K} be a component of $\left(A^{r}\right)_{0}^{H}$)
$P_{\left(A_{K} \times F(H)\right), W_{K}}=P_{A_{K}, W_{K}} \cdot P_{F(H), W_{K}}$.
$P_{A_{K}, W_{K}}$ is obtained computing the cohomology of A_{K} invariant via W_{K} :
$P_{A_{K}, W_{K}}(t)=\sum_{i=0}^{2 d r_{0}}\left(2 d \cdot \eta_{K}\right)^{\wedge i} \cdot t^{i}=(1+t)^{2 d \eta_{K}}$ where $\eta_{K}: W_{K} \rightarrow G L\left(r_{K}, \mathbb{C}\right)$ is a representation of W_{K} induced from $\rho_{\mathbb{C}}$.

Idea of computation

Poincaré of the strata (Let A_{K} be a component of $\left(A^{r}\right)_{0}^{H}$)
$P_{\left(A_{K} \times F(H)\right), W_{K}}=P_{A_{K}, W_{K}} \cdot P_{F(H), W_{K}}$.
$P_{A_{K}, W_{K}}$ is obtained computing the cohomology of A_{K} invariant via W_{K} :
$P_{A_{K}, W_{K}}(t)=\sum_{i=0}^{2 d r_{0}}\left(2 d \cdot \eta_{K}\right)^{\wedge i} \cdot t^{i}=(1+t)^{2 d \eta_{K}}$ where $\eta_{K}: W_{K} \rightarrow G L\left(r_{K}, \mathbb{C}\right)$ is a representation of W_{K} induced from $\rho_{\mathbb{C}}$.
By McKay the group $W(H)$ acts on the cohomology of $F(H)$ as $W(H)$ acts on the conjugacy classes of H.
So $P_{F(H), W_{K}}$ is determined by the adjoint action of W_{K} on conjugacy classes of elements in H, which is $w\left([h]_{H}\right) \mapsto\left[w h w^{-1}\right]_{H}$.

Idea of computation

The virtual Poincaré polynomial of $X([H])$ is obtained taking out the contribution of the lower dimensional strata over the difference $\widehat{Y([H])} \backslash Y([H])$. Take therefore $H^{\prime}>H$ a subgroup

Cohomology of a $K 3$ surface

Let A be a one dimensional torus and
$\rho\left(\mathbb{Z}_{6}\right)=<\left(\begin{array}{rr}0 & -1 \\ 1 & 1\end{array}\right)>\subset S L(2, \mathbb{Z})$.
In $S L(2, \mathbb{C}) \rho=\epsilon_{6}+\epsilon_{6}^{5}, \epsilon_{6}=$ sixth primitive root of unity.

Cohomology of a $K 3$ surface

Let A be a one dimensional torus and
$\rho\left(\mathbb{Z}_{6}\right)=<\left(\begin{array}{rr}0 & -1 \\ 1 & 1\end{array}\right)>\subset S L(2, \mathbb{Z})$.
$\ln S L(2, \mathbb{C}) \rho=\epsilon_{6}+\epsilon_{6}^{5}, \epsilon_{6}=$ sixth primitive root of unity. $\rho \otimes \rho=2 \cdot \mathbf{1}+\epsilon_{6}^{2}+\epsilon_{6}^{4}$ hence the space of invariant $(1,1)$ forms is of dimension 2.

Cohomology of a $K 3$ surface

Let A be a one dimensional torus and
$\rho\left(\mathbb{Z}_{6}\right)=<\left(\begin{array}{rr}0 & -1 \\ 1 & 1\end{array}\right)>\subset S L(2, \mathbb{Z})$.
$\ln S L(2, \mathbb{C}) \rho=\epsilon_{6}+\epsilon_{6}^{5}, \epsilon_{6}=$ sixth primitive root of unity.
$\rho \otimes \rho=2 \cdot \mathbf{1}+\epsilon_{6}^{2}+\epsilon_{6}^{4}$ hence the space of invariant $(1,1)$
forms is of dimension 2.
We add to it the contribution of cohomology coming from resolving singular points of the quotient.

Cohomology of a $K 3$ surface

$$
\begin{array}{lcclc}
g & \text { \# fix pts } & \text { \# sing pts } & \text { resolution } & \text { Poincaré } \\
\left(\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right) & 1 & 1 & \bullet \bullet \bullet \bullet & 1+5 t \\
\left(\begin{array}{rr}
0 & 1 \\
-1 & -1
\end{array}\right) & 9 & 4 & \bullet & 1+2 t \\
\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) & 16 & 5 & \bullet & 1+t
\end{array}
$$

Cohomology of a $K 3$ surface

$$
\begin{gathered}
\text { \# fix pts }
\end{gathered} \quad \text { \# sing pts } \begin{aligned}
& \text { resolution }
\end{aligned} \text { Poincaré }
$$

The dimension of H^{11} for a K 3 surface is:

$$
2+1 \times 5+4 \times 2+5 \times 1=20
$$

Cohomology of a CY mfd

$S_{4} \subset S L(3, \mathbb{Z})$ as the isometry of a cube (octahedral group) A an elliptic curve.

Cohomology of a CY mfd

$S_{4} \subset S L(3, \mathbb{Z})$ as the isometry of a cube (octahedral group) A an elliptic curve.

$$
\begin{aligned}
& g \quad \text { Fix }(g) \quad \# \text { cmpnts } \quad\langle g\rangle \quad W(g) \quad \widehat{Y(\langle g\rangle)} \quad \text { Poincaré } \\
& \left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \begin{array}{l}
2 e_{1}=0 \\
2 e_{2}=0
\end{array} \\
& 16 \\
& \mathbb{Z}_{2} \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
& 6 \times \mathbb{P}^{1} 1 \\
& 1+t^{2} \\
& \begin{array}{ll}
\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) & \begin{array}{l}
e_{1}=e_{2} \\
2 e_{1}=0 \\
\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{array} \begin{array}{l}
e_{1}=e_{2} \\
2 e_{3}=0
\end{array}
\end{array} \\
& 4 \\
& \mathbb{Z}_{4} \\
& e_{1}=e_{2} \\
& 1 \\
& \mathbb{Z}_{3} \\
& \mathbb{Z}_{2} \\
& 1 \times \mathbb{P}^{1} \quad 1+(1+\epsilon)
\end{aligned}
$$

Cohomology of a CY mfd

1-dim non-free point sets meet at $\left\{p \in A^{3}: 2 p=0\right\}$ whose cardinality is $4^{3}=64$

Cohomology of a CY mfd

1-dim non-free point sets meet at $\left\{p \in A^{3}: 2 p=0\right\}$ whose cardinality is $4^{3}=64$

subgroup	fixed set in $\{2 p=0\}$	\# fixed pts	\# sing pts	Poincaré
D_{4}	$e_{1} \neq e_{2} \neq e_{3} \neq e_{1}$	24	4	$1+3 t^{2}$
$3 \times D_{8}$	$e_{i}=e_{j} \neq e_{k},\{i, j, k\}=\{1,2,3\}$	36	12	$1+4 t^{2}$
$G=S_{4}$	$e_{1}=e_{2}=e_{3}$	4	4	$1+4 t^{2}$

Cohomology of a CY mfd

3-dimensional stratum
$S 3(t):=1+t^{2}+4 t^{3}+t^{4}+t^{6}-\left(15\left(1+t^{2}-4\right)+20\right)$
1-dimensional strata
$S 12(t):=10\left(\left(1+t^{2}\right)\left(1+t^{2}\right)-4\left(1+t^{2}\right)\right)$
$S 13(t):=\left(\left(t^{4}+2 t^{3}+2 t^{2}+1\right)-4\left(1+t^{2}\right)\right)$
$S 14(t):=4\left(\left(2 t^{4}+2 t^{3}+3 t^{2}+1\right)-4\left(1+2 t^{2}\right)\right)$
0 -dimensional stratum
$S 0(t):=4\left(1+3 t^{2}\right)+(12+4)\left(1+4 t^{2}\right)$
Calculating the sum
$P(t):=S 3(t)+S 12(t)+S 13(t)+S 14(t)+S 0(t)$ we get:

$$
P_{X}(t)=t^{6}+20 t^{4}+14 t^{3}+20 t^{2}+1 .
$$

Cohomology of $\operatorname{Kum}^{n}(A)$, Hilb $^{n}(K 3)$

Let A be a two dimensional torus.

Cohomology of $K^{n}{ }^{n}(A), H i l b^{n}(K 3)$

Let A be a two dimensional torus.
The Poincaré polynomial of the Beauville's generalized Kummer variety, i.e. a crepant resolution of A^{n} / S_{n+1} is :

```
n=2:
t}\mp@subsup{}{}{8}+7\mp@subsup{t}{}{6}+8\mp@subsup{t}{}{5}+108\mp@subsup{t}{}{4}+8\mp@subsup{t}{}{3}+7\mp@subsup{t}{}{2}+
n=3:
t ^ { 1 2 } + 7 t ^ { 1 0 } + 8 t ^ { 9 } + 5 1 t ^ { 8 } + 5 6 t ^ { 7 } + 4 5 8 t ^ { 6 } + 5 6 t ^ { 5 } + 5 1 t ^ { 4 } + 8 t ^ { 3 } + 7 t ^ { 2 } + 1
```


Cohomology of $K^{n}{ }^{n}(A), H i l b^{n}(K 3)$

Let A be a two dimensional torus.
The Poincaré polynomial of the Beauville's generalized Kummer variety, i.e. a crepant resolution of A^{n} / S_{n+1} is :

```
n=2:
t}\mp@subsup{}{}{8}+7\mp@subsup{t}{}{6}+8\mp@subsup{t}{}{5}+108\mp@subsup{t}{}{4}+8\mp@subsup{t}{}{3}+7\mp@subsup{t}{}{2}+
n=3:
t }\mp@subsup{}{}{12}+7\mp@subsup{t}{}{10}+8\mp@subsup{t}{}{9}+51\mp@subsup{t}{}{8}+56\mp@subsup{t}{}{7}+458\mp@subsup{t}{}{6}+56\mp@subsup{t}{}{5}+51\mp@subsup{t}{}{4}+8\mp@subsup{t}{}{3}+7\mp@subsup{t}{}{2}+
```

The Poincaré polynomial of a crepant resolution of $A^{n} / \mathbb{Z}_{2}^{n} \rtimes S_{n}$ is :
$n=2$:
$t^{8}+23 t^{6}+276 t^{4}+23 t^{2}+1$

Local symplectic resolutions

Let $\pi: X \rightarrow Y$ be a proper symplectic elementary contraction with X smooth and $\operatorname{dim} X=4$.

Local symplectic resolutions

Let $\pi: X \rightarrow Y$ be a proper symplectic elementary contraction with X smooth and $\operatorname{dim} X=4$.
Theorem [Wi-Wi]. If π is small then π is locally analytically isomorphic to the collapsing of the zero section in the cotangent bundle of \mathbb{P}^{2}; in particular it admits a Mukai flop (and it stays smooth !).

Local symplectic resolutions

Let $\pi: X \rightarrow Y$ be a proper symplectic elementary contraction with X smooth and $\operatorname{dim} X=4$.
Theorem [Wi-Wi]. If π is small then π is locally analytically isomorphic to the collapsing of the zero section in the cotangent bundle of \mathbb{P}^{2}; in particular it admits a Mukai flop (and it stays smooth !).
If $Y=\mathbb{C}^{4} / G$ with $G<S p(4)$ a finite subgroup we know that a (hilb type) symplectic resolution $X \rightarrow Y$ exists if $G=D_{6}:=\mathbb{Z}_{3} \rtimes \mathbb{Z}_{2}=\sigma_{3}$ or if $G=(\Gamma)^{\times 2} \rtimes \mathbb{Z}_{2}$ where $\Gamma<S L(2)$.
The resolution is elementary in the first case and in the second when $\Gamma=1$.

Local symplectic resolutions

Therefore we know 3 proper symplectic elementary contractions $X \rightarrow Y$ with X smooth and $\operatorname{dim} X=4$, namely:

1) the (unique) small symplectic contraction
2) the (unique) resolution of $\mathbb{C}^{4} / \sigma_{3}$
3) the (unique) resolution of $\mathbb{C}^{4} / \mathbb{Z}_{2}$

Local symplectic resolutions

Therefore we know 3 proper symplectic elementary contractions $X \rightarrow Y$ with X smooth and $\operatorname{dim} X=4$, namely:

1) the (unique) small symplectic contraction
2) the (unique) resolution of $\mathbb{C}^{4} / \sigma_{3}$
3) the (unique) resolution of $\mathbb{C}^{4} / \mathbb{Z}_{2}$

Conjecture Are they the only ones?

Local symplectic resolutions

Theorem A proper symplectic elementary contraction $\pi: X \rightarrow Y$ with X smooth and $\operatorname{dim} X=4$ is a Mori Dream Space (that is any movable divisor can be made nef and semiample after a finite number of SQM (small quasifactorial modification)).

Local symplectic resolutions

Theorem A proper symplectic elementary contraction $\pi: X \rightarrow Y$ with X smooth and $\operatorname{dim} X=4$ is a Mori Dream Space (that is any movable divisor can be made nef and semiample after a finite number of SQM (small quasifactorial modification)).

In fact it holds
i) Cone and contraction theorems (Mori-Kawamata)
ii) Existence of Flops (and of SQM) (Wi-Wi)
iii) Termination of Flops (Matsuki)

Example

Let $\pi: X \rightarrow Y$ be the Hilb type symplectic resolution of $Y=\mathbb{C}^{4} /\left(\left(\mathbb{Z}_{3}\right)^{2} \rtimes \mathbb{Z}_{2}\right)$.

Example

Let $\pi: X \rightarrow Y$ be the Hilb type symplectic resolution of $Y=\mathbb{C}^{4} /\left(\left(\mathbb{Z}_{3}\right)^{2} \rtimes \mathbb{Z}_{2}\right)$.
\ldots or the resolution of $Y=\mathbb{C}^{4} /\left(\sigma_{3} \rtimes \mathbb{Z}_{3}\right)$

