Third African School and Workshop

X-rays in Materials

January 23-28, 2012

Dakar

Basic crystallography

Paolo Fornasini Department of Physics University of Trento, Italy

DakarThird African SchoolJanuary 23-28, 2012and Workshop

X-rays in Materials

<u>Overview</u>

- X-rays, basic properties
- X-rays and materials structure
- Crystal lattices
- Some relevant crystal structures
- Crystal planes
- Reciprocal lattice

X-rays, basic properties

X-rays are electromagnetic waves

Propagating sinusoidal waves

3-D plane-waves: wave-vector

Electromagnetic spectrum

Interaction of x-rays with matter

X-rays and materials structure

Crystals

Paolo Fornasini Univ. Trento

Quartz crystal (SiO₂)

Macroscopic regularities (e.g. constancy of angles)

Classification of crystals

Regular packing of microscopic structural units R.J. Haüy (1743-1822)

X-ray diffraction from crystals

Crystallography

Paolo Fornasini Univ. Trento

William Henry Bragg (1862-1942)

Cambridge, 1912/13

Bragg spectrometer

William Lawrence Bragg (1890-1971)

Bravais lattice + basis

Macro and micro-crystals

Paolo Fornasini Univ. Trento

Monocrystalline silicon, \varnothing 13 cm

Cr, electron microscopy

Grain structure

Effects of temperature

Crystal lattices

Different choices of primitive vectors \vec{a}, \vec{b}

Primitive vectors (3D)

Paolo Fornasini Univ. Trento

3-D

$$\vec{R} = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c}$$

Different choices of primitive vectors \vec{a} , \vec{b} , \vec{c}

Primitive cell = 1 lattice point

More than 1 lattice point per unit cell

Bravais lattices

Characterization of unit cells 2-D 3-D \vec{b} \vec{c} \vec{a} X \vec{b} γ B \vec{a}

Some relevant crystal structures

Coordination number

Crystal planes

Crystal planes in 2D

Planes and directions

Family of planes

Reciprocal lattice

Basic idea

Paolo Fornasini Univ. Trento

A) Family of planes \rightarrow wave-vector

Time periodicity

Space periodicity (1D)

Reciprocal lattice and lattice planes

Paolo Fornasini Univ. Trento

For any family of lattice planes separated by a distance d there are reciprocal lattice vectors perpendicular to the planes, the shortest of which have a length $2\pi/d$.

For any reciprocal lattice vector R^* , there is a family of lattice planes normal to R^* and separated by a distance d, where $2\pi/d$ is the length of the shortest reciprocal lattice vector parallel to R^* .

- Plane waves and wavevector
- Crystalline and non-crystalline materials
- Crystal structure = Bravais lattice + basis
- Bravais lattices: primitive vectors, unit cells (primitive and conventional), classifications
- Crystal structures (sc, bcc, fcc, hcp ...)
- Crystal planes and Miller indices
- Reciprocal lattice

Snow crystals on an iced lake