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where uB = eh/(2mc) and g is the gyromagnetic factor. The response induced by
this interaction Hamiltonian has been recently observed in GaAs layers by means
of scattering of polarized light in the backscattering geometry [1].

When the system is spin unpolarized in the ground state, it is the same to excite
it with F+, F– or Fz since the three final states can be related by a rotation in
spin space. However, when the system has a spin different from zero in the ground
state, which can be reached by putting it into a static magnetic field along the
z-direction, significant differences emerge among the final states and one observes
the existence of splittings between the excited states with different DSZ . In the
following we will study the linear response of the electron gas, metal clusters and
quantum dots in the time dependent local spin density approximation (TDLSDA)
in two cases: a) the longitudinal DSZ = 0 channel in the case of zero magnetization
(Ei Sz) = 0 in the ground state; b) the transverse DSz = ±1 channel in the case
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We study spin longitudinal and transverse linear response of the 3-dimensional electron
gas, metal clusters and quantum dots. When the systems are spin unpolarized in the
ground state, a low energy collective state emerges in finite size systems due to the discrete
shell structure, whereas it is absent in the bulk due to the Landau damping. In the case
of spin polarization of the ground state a collective state is present also in the bulk and a
family of new collective states appears in finite size systems.

In this paper we study the excited states of electron systems which are induced
by the external fields F+,– , z = Ei=1 f(ri )S+,-,z , where S+,-,z are the spherical
components of the vector of Pauli matrices which represents the spin operator.
We use the following definitions: S+ = 1/2(Sx ± iSy ), S+| |) = 0, S+| |) = | |),
S-| |) = | |), S–| |) = 0, S z | |) = | T), Sz | |) = –| |). These fields enter the
interaction Hamiltonian of the electron systems with an oscillating magnetic field
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where A f r e e ( q , w ) is the Lindhard free response function (notice that the free re-
sponse is the same in the spin longitudinal and density channels) and DWxc/Dm|m=0

and in (3) DWxc/Dm|m=0 D(r1 - r2) is the residual interaction obtained by the
spin dependent part of the exchange correlation potential of (5). The potentials
in (5) are given by Vxc = DE x c(p, m)/Dp and Wxc = DE x c (p , m)/Dm, where Exc is
the exchange correlation energy which has been taken from quantum Monte Carlo
calculations, and satisfies the relations: V x c (p 0 ,m 0 = 0), 0, W x c (p 0 , m0 = 0) = 0,
DWxe/Dm|m=0 = 0, DVxc/dm||m=0= 0. The residual interaction in the spin channel
is always negative (attractive).

In the bulk the integral equation (3) yields the following analytical expression
for the polarizability

The single particle states are obtained as solutions of the LSDA equations

and the independent-particle longitudinal response function X00 can be expressed in
terms of the occupied single particle states PhS and energies EhS and the unoccupied
ones Ppa and epS as

X 0 0 ( r , r',w) is the correlation function, solution of the Dyson type integral equation
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of a magnetization (Ei Si) = (N| – N|) = 0 in the ground state, where N| (N|)
is the number of electrons with spin up (down).

In the DSZ = 0 channel, for zero magnetization, the TDLSDA linear response to
the external field Fz = Ei=1 f(ri)S

z is given [2] by A0(f,w) = /drf*(r)Dm0(r,w),
where Dm0(r ,w) is the variation of the z-component of the magnetization density
m(r) = (EiSiD(r – ri)). It is induced by the external field on the system and is
given by
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Fig. 1. Imaginary part of the polarizability in the spin (dashed) and density (solid)
response of the Na58 cluster in atomic units. For comparison, the free response (long-

dashed) is also shown.
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is the residual interaction in momentum space. The eigenstates of the system are the
poles of A0, given by the solutions of the equation Afree(q,w) = 1/(DWxc /Dm|m=0 ).

Since the residual interaction is negative, one realizes immediately that collective
solutions do not emerge from this equation, but only a continuum of single particle
type solutions extending from zero to the energy qvF , where VF is the Fermi velocity.
These solutions correspond to the poles of the free response function. This should
be contrasted with the case of the density channel where a collective state emerges
as a solution of the TDLDA equation for the polarizability since in this channel the
residual interaction is repulsive and equal to 4P/q2 in the small q limit.

The situation is, however, different in finite size systems like metal clusters and
quantum dots due to the existence in these systems of a shell structure that gives
rise to a gap in the single particle spectrum at low energy. An undamped low energy
collective state can then survive in this case. It has been studied in metal clusters
within the TDLSDA in Ref. 3, within the sum rule approach in Refs. 4, 5, and in
quantum dots in Ref. 6. In Figs. 1 and 2 we compare the spin response of the metal
cluster Na58 and the quantum dot of GaAs containing 12 electrons with the density
and the free ones. From the figures one notices that in both channels the response
is dominated by a single peak which exhausts a large fraction of the f-sum rule and
that in the spin channel the energy of the peak is much lower than in the density
channel. This is due to the effect of the residual interaction which is of opposite sign
in the two channels and shifts the peak energy, with respect to the single particle
response, in opposite directions. We also notice that this shift is much larger in the
density channel than in the spin one.



728 Czech. J. Phys. 48 (1998)

where eF is the Fermi energy. When the system interacts with the external field
F– = Ei=1 f ( r i ) S i e – i w t = S– e – i w t , the potential 2fxc(m+S- + m– S+), entering

where fxc = Wxc/m, m = |m| and in the ground state mx = 0, my = 0, mz = m0

and the vector potential A = l/2(–y, x, 0)B describing the magnetic field B in the
z direction gives rise to diamagnetic effects, which in the following will be taken
into account in the quantum dots and not in the electron gas. The spin dependent
terms of (7) give rise to different and coupled equations for spin up and down single
particle wave functions which are solved using iteration techniques. In the case of
the bulk the magnetization induced in the electron system by the static magnetic
field can be calculated analytically and is given by

Fig. 2. Imaginary part of the polarizability in the spin (solid) and density (dashed)
response of a spin unpolarized quantum dot of GaAs with 12 electrons in effective atomic

units. For comparison, the free response (long-dashed) is also shown.

In the DSZ = ±1 channel, for a magnetization different from zero in the ground
state obtained by putting the system in a static magnetic field B, the LSDA equa-
tions become:
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When the static spin polarizing field B is zero, then WL = wa = 0, f x c ( p 0 , m0 ) =
DWxc/Dm|m=0 and (13) coincides with (6) and the electron gas does not display

where wa = WL/(1 + 3 p 0 f x c ( p 0 , m 0 ) / ( 2 e F ) ) and WL = eB/(mc) is the Larmour
frequency, and is different from the Lindhard free response

where A f ree(q,w) is the free transverse response. In the qvF <eF limit it is given
by

the TDLSDA expression

is the free transverse correlation function, built with the solutions of the LSDA
equations (7). Notice that when the system is polarized x± = X00.

In the 3d electron gas, where F+ = S+ = Ei=1 Si eFiq.ri one gets for the
transverse response

where

and X±(r, r', w) is the correlation function, solution of the Dyson type integral
equation
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the scalar product fxcm . S of (7) and statically equal to zero, changes due to the
changes Dm+ dynamically induced in the magnetization m+. The transverse linear
response function is defined by A±(f, w) = ((Sf )t) = f dr f*(r)Dm + (r , w), with
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with F = 3p0fxc(p0, m0)/(2eF).
This solution is an elementary excitation induced by the operator S– since it

exhausts completely the sum rule s0 giving |(coll. |S–|0)|2 = N| - N| , the strength
En |(n|S+|0)|2 being zero as a consequence of the Pauli blocking in the q —> 0 limit.
This collective solution is the transverse spin wave of the electron gas predicted by
the Landau theory [7] and experimentally observed in alkali metals [8].

In the quantum dots the electrons are confined in the (x, y) plane and we have
solved the Kohn-Sham equations (7) including the terms arising from the vector

that in the q —> 0 limit and for qvF/ wa < 1 (high magnetic field) has a collective
undamped solution at the energy

Fig. 3. Imaginary part of the transverse polarizability of a spin polarized quantum dot
of GaAs with 6 spin up and 5 spin down electrons in effective atomic units. The full
line is the DLZ = 1, DSZ = 1 response, the dotted line is the DLz = 1, DSZ = –1
response, the dashed line is the DLZ = –1, DSz = 1 response, the dotted-dashed line is

the DLZ = – 1, DSz = – 1 response.

a collective state in the spin channel. However, when B is different from zero and
sufficiently high, new solutions emerge.

From (12) one sees that the poles of a±(q ,w) with positive frequency are ex-
citations induced by S– and the poles of a±(q ,w) with negative frequency are
excitations induced by S+. Furthermore, taking the w —>I limit of (12), one gets
a±(q, w)|w –>I S0/w with s0 = En |(n|S–|0)|2 - En |(n|S+|0)|2 = N| - N| , a
model independent sum rule. The poles of (12) are solutions of the equation
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potential in the so called current density functional theory (CDFT) [9, 10]. The
CDFT ground state is an eigenstate of Sz and Lz, whose eigenvalues are predicted
by the theory, and the external operators F+ = EixiSi excite states with DSz =
±1 and DLz = ±1. The result of our preliminary calculation [11] for the transverse
polarizability, obtained from the solution of Eq. (10), in the case of a dot with 11
electrons in a static field of 0.7 T, is given in Fig. 3. From the figure, one sees that
in dots a family of collective states emerge in the transverse response of the system.
These states can be studied experimentally with inelastic scattering of polarized
light in a backscattering geometry.

References

[1] V. Pellegrini et al.: Phys. Rev. Lett. 78 (1997) 310.

[2] A.R. Williams and U. Von Barth: in Theory of the Inhomogeneous Electron Gas (Eds.
S. Lundqvist and N.H. March), Plenum, New York, 1983, p. 231.

[3] LI. Serra, R.A. Broglia, M. Barranco, and A. Navarro: Phys. Rev. A 47 (1993) 1601.

[4] E. Lipparini and M. Califano: Z. Phys. D 37 (1996) 365.

[5] LI. Serra and E. Lipparini: Z. Phys. D 42 (1997) 227.

[6] LI. Serra and E. Lipparini: Europhys. Lett. 40 (1997) 667.

[7] P.M. Platzman and P.A. Wolff: Phys. Rev. Lett. 18 (1967) 280.

[8] S. Schultz and G. Dunifer: Phys. Rev. Lett. 18 (1967) 283.

[9] M. Ferconi and G. Vignale: Phys. Rev. B 50 (1994) 14722.

[10] E. Lipparini, N. Barberan, M. Barranco, M. Pi, and LI. Serra: Phys. Rev. B 56 (1997)
12375.

[11] E. Lipparini and LI. Serra: Phys. Rev. B 57 (1998) 6830.


