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Abstract. We use diffusion Monte Carlo to study the ground state, the low-lying excitation spectrum
and the spin densities of circular quantum dots with parabolic radial potentials containing N = 16 and
N = 24 electrons, each having four open-shell electrons and compare the results to those obtained from
Hartree-Fock (HF) and density functional local spin density approximation (LSDA) calculations. We find
that Hund’s first rule is obeyed in both cases and that neither HF nor LSDA correctly predict the ordering
of the energy levels.

PACS. 73.21.La Electron states in quantum dots

1 Introduction

It is possible to make solid-state structures, called quan-
tum dots, at semiconductor interfaces that confine a small
number of mobile electrons. Quantum dots [1–4], contain-
ing one to several tens of electrons are analogous to atoms
with tunable properties, exhibiting shell structure and
obeying Hund’s first rule. They are both of considerable
technological interest and of theoretical interest because
it is possible to go from a weak correlation to a strong
correlation regime by tuning the relative strength of the
external potential to the electron-electron potential.

A variety of theoretical methods have been used to
study the electronic structure of quantum dots. Some of
the simpler methods that have been used are the (spin-
unrestricted) Hartree-Fock method (HF) and the space-
and spin-unrestricted Hartree-Fock method (UHF) [5,6],
that treat exchange exactly but totally ignore correlation,
and the local spin density approximation (LSDA) and its
space-unrestricted version, ULSDA [7,8], to density func-
tional theory that treat both exchange and correlation ap-
proximately. In contrast to the situation in atoms, where
the exchange energy is much larger than the correlation
energy, in dots it is possible to be in a low density regime
where exchange and correlation are equally important.
Consequently it has been found [9,10] that in contrast to
atoms, the Hartree-Fock approximation is a poor approxi-
mation for dots and that the local spin density approxima-
tion is significantly better but nevertheless inadequate for
predicting the correct ordering and values of the ground
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and excited state energies. Another disadvantage of the lo-
cal spin density approximation is that the wave functions
are not eigenstates of total spin Ŝ2. The configuration in-
teraction or exact diagonalization method [11–14] has the
advantage of being systematically improbable but suffers
from an exponential increase in the computer time as a
function of the number of electrons for fixed accuracy in
the energy. Hence this method in practice yields accurate
energies for only N ≤ 6 electrons. Some of the most accu-
rate results to date have been obtained by the stochastic
variational method with correlated Gaussian basis func-
tions [15], but this method too scales badly with N and
is limited to a similar or slightly larger number of elec-
trons. Another method that has been used [16,17] is the
path-integral Monte Carlo method but it has the disad-
vantage that one cannot differentiate between states that
differ only in the orbital angular momentum, L, quantum
number. Instead, the diffusion Monte Carlo method is our
method of choice because it offers the best compromise
between computational time and accuracy. For bosonic
ground states it yields essentially exact results, aside from
statistical errors. For fermionic states it suffers from the
“fixed-node error” but this error can in many cases be
made very small by choosing well optimized trial wave
functions. In our earlier work [9], we calculated ground and
low-lying excited states of dots withN ≤ 13 electrons. The
energies of ground and excited states with N ≤ 6 electrons
were checked by the stochastic variational method [15]
and excellent agreement was found for all states except
one [18].
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In Section 2 we describe the computational methods
we use, in Section 3 we present ground and excited state
energies and ground state spin densities of N = 16 and
N = 24 dots. The conclusions are in Section 4.

2 Computational method

2.1 Hamiltonian

We model the dot as usual within the effective mass
approximation as N electrons in a 2-dimensional space
(z = 0 plane), whose motion is laterally confined by the
potential Vcon(r) = ω2r2/2. The Hamiltonian is

H =
N∑
i=1

(
− ~2

2m∗
∇2
i + Vcon(ri)

)
+

e2

ε

N∑
i<j

1
|ri − rj |

, (1)

where m∗ is the electron effective mass, and ε is the di-
electric constant of the semiconductor. For GaAs m∗ =
0.067me, where me is the electron mass, and ε = 12.4.
Employing effective atomic units, (~ = e2

ε = m∗ = 1),
the energies are in effective Hartree units and lengths in
effective Bohr radii. For the GaAs parameters the effec-
tive Hartree is H∗ =Hm∗/(meε

2) ' 11.86 meV and the
effective Bohr radius is a∗0 = a0εme/m

∗ ' 97.93 Å.
For parabolic quantum dots the single particle lev-

els have energies [19] εn,l = (2n + |l| + 1)ω, where n
is the principal quantum number and l is the azimuthal
quantum number, and dots with electron numbers N =
2, 6, 12, 20, 30, ... have closed-shell configurations. In both
the dots we are considering, i.e., N = 16 and N = 24,
there are 4 electrons in a partially filled shell. The open-
shell electrons occupy the |n, lz〉 = |0,±3〉, |1,±1〉 and the
|n, lz〉 = |0,±4〉, |1,±2〉, |2, 0〉 orbitals in the N = 16 and
N = 24 dots respectively.

The strength of the parabolic confinement depends on
the number of electrons. A good approximation to the ex-
perimental dependency is given by ω2 = e2/(εm∗r3

s

√
N)

where rs = 1/
√
πρ0 is the Wigner–Seitz radius of a disk

of uniform charge density ρ0 whose potential approxi-
mates a parabola with spring constant ω at its center.
For the N = 16, 24 dots we assume rs = 1.512, and
rs = 1.523. The value of the confinement parameters are
then ω = 0.269 H∗ and 0.240 H∗ respectively, correspond-
ing to energies of 3.2 and 2.9 meV.

2.2 Fixed-phase DMC

The diffusion Monte Carlo method employs the
importance-sampled Green function

G(R′,R, τ) = ΨT (R′) 〈R′|e−Ĥτ |R〉/ΨT (R) (2)

to project out the lowest state of the same symmetry as
the trial state, ΨT (R). As the projection time τ gets larger,
the amplitude of higher states decay exponentially relative
to the amplitude of the lowest state. Since G(R′,R, τ) is

not known exactly for general potentials, a short-time ap-
proximation is employed and the operator e−Ĥτ is applied
repeatedly to achieve the desired projection and collect
adequate statistics. In practice, we employ a slightly mod-
ified version of the propagator presented in reference [21]
which has very small time-step errors.

In order to avoid a statistical error that grows expo-
nentially with the projection time it is usual to employ
the fixed-node [22] (for real wave functions) or the fixed-
phase [23,24] (for complex wave functions) approxima-
tions to DMC, wherein one obtains the lowest state with
the same nodes or the same phase as the trial state ΨT .
For the lowest state of any symmetry, the energy obtained
is an upper bound [25]. Our program is written to han-
dle finite magnetic fields, in which case the wave function
cannot be chosen to be real, so we employ the fixed-phase
approximation.

It is always possible to split a complex-valued function
ΨT into its modulus and phase:

ΨT (R) = |ΨT (R)| expiφT (R) , (3)

where φT (R) is the phase function. The product

Ψ∗(R)ΨT (R) = |Ψ(R)||ΨT (R)| exp[i(φT (R)− φ(R))]
(4)

cannot be used as the density for sampling, because it
is not a positive definite function. In the fixed-phase
approximation one assumes that

exp[i(φT (R)− φ(R))] = 1, (5)

so the sampled distribution is

ρ = |Ψ(R)||ΨT (R)|. (6)

2.3 Trial wave functions

Accurate DMC calculations in the fixed–node or fixed–
phase approximations rely on the quality of the trial wave
functions ΨT used for importance sampling. Our trial wave
functions have the form

ΨT (R)L,S = exp[φ(R)] ΞL,S(R) , (7)

where ΞL,S(R) is the configuration-state function and
exp[φ(R)] is a generalized Jastrow factor.

The configuration state functions, Ξi, are eigenstates
of the angular momentum L̂, the total spin Ŝ2, and Ŝz of
the form

ΞL,S(R) =
m∑
j=1

βjD
↑
jD
↓
j . (8)

In equation (8), m is the number of determinants needed
for the configuration state function, Dj are Slater deter-
minants constructed from LSDA orbitals and βj are the
coefficients fixed by diagonalizing the S2 operator in this
determinantal basis. We prefer to employ LDA orbitals
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Table 1. Comparison of the ground state energies (in effective Hartree units) of the the N = 16 and 24 dots obtained from
DMC, VMC, LSDA and HF. The DMC and VMC ground states have quantum numbers L=0, S=2 following Hund’s first rule.
The numbers in parentheses are the statistical errors in the last digit.

DMC/VMC Energy (H∗)

N ω L,S DMC VMC LSDA HF

16 0.269 0, 2 41.0460(4) 41.1217(8) 41.1091 42.2806

24 0.240 0, 2 75.9754(5) 76.117(1) 76.0102 77.9031

instead of LSDA orbitals, in order to facilitate the con-
struction of eigenstates of Ŝ2. Details are provided in the
Appendix. In one case (the ground state of the N = 24
dot) we used also wave functions [20] from a spatially unre-
stricted symmetry LSDA calculation (ULSDA), in which
the density functional Hamiltonian is not restricted to
have the circular symmetry that the true Hamiltonian pos-
sesses. In this case the orbitals do not transform as one
of the irreducible representations of the 2-dimensional ro-
tation group and the wave functions are not necessarily
eigenstates of L̂.

The generalized Jastrow factor has the form intro-
duced in reference [26],

φ(R) =
N∑
i=1

6∑
k=1

γkJ0

(
kπri
Rc

)
+

N∑
i<j

1
2

(
aijrij

1 + b(ri)rij
+

aijrij
1 + b(rj)rij

)
,

(9)

where

b(r) = b0ij + b1ij tan−1 (r −Rc)2

2Rc∆
, (10)

and γk, b0ij , b
1
ij ,∆ and Rc are variational parameters. This

function includes explicitly one- and two-body correla-
tions, while the dependence of coefficients b on the position
via equation (10) gives rise to implicit many body correla-
tions. The aij coefficients are fixed by the cusp-condition,
i.e., the local energy defined as

EL=
ĤΨT
ΨT

, (11)

must remain finite when the distance rij between two
electrons tends to zero. For a Coulomb system in two di-
mensions a↑↓ = a↓↑ = 1 and a↑↑ = a↓↓ = 1/3. The use
of spin-dependent aij introduces spin contamination, i.e.,
the wave functions are no longer strictly eigenstates of Ŝ2,
but this contamination has been shown to be negligible in
the case of atomic wave functions [27] and we expect that
to be true here as well. All other coefficients in equation
10 are optimized by minimizing the variance of the local
energy [28]. Typical values of the root mean square fluctu-
ations of the local energy are σ2 = 0.3–0.4H∗, consistent
with values found for smaller dots [9] if one assumes that
to a rough approximation σ ∝

√
N . This suggests that

the quality of the wavefunctions obtained is comparable
to that of the smaller dots [9].

3 Results

3.1 Ground state results and Hund’s first rules

In Table 1 we show ground state DMC and VMC ener-
gies. The DMC and VMC ground states of both dots have
L = 0, S = 2 symmetry. The total spin S is the maxi-
mum allowed for four open-shell electrons, complying with
Hund’s first rule. For the N = 24 case, it is possible to
form |L=2, S=2〉 and |L=4, S=2〉 states, but these have
higher energies than the |L=0, S=2〉 state. Thus Hund’s
second rule, which states that the ground state angular
momentum has the largest value consistent with Hund’s
first rule and fermion statistics, is not obeyed.

For the N = 16 dot, the occupied LSDA orbitals are
|n, l, s〉 = |1,±3, 1

2 〉 and |2,±1, 1
2 〉 resulting in a correct

|L = 0, S = 2〉 prediction for the ground state symme-
try. However, for the N = 24 dot the occupied LSDA
orbitals are |n, l, s〉 = |1,±4,± 1

2 〉 resulting in an in-
correct |L = 0, S = 0〉 prediction for the ground state
symmetry. However, the |L = 0, S = 2〉 state with or-
bitals |n, l, s〉 = |1,±4, 1

2 〉 and |1,±2, 1
2 〉 occupied is only

7×10−6 H∗ higher in energy. These calculations were per-
formed with the self-consistent LSDA effective potential
constrained to have circular symmetry. It is well-known
that if the LSDA or HF potentials are not constrained
to have the same symmetry as the external potential, sit-
uations do arise where they can have a lower symmetry
than the external potential. Such calculations are referred
to as space unrestricted, and we will use the acronyms
ULSDA and UHF for the density functional and Hartree-
Fock cases respectively. The ULSDA calculations [7] pre-
dict a spin-density wave state, but as pointed out by
Hirose and Wingreen this is an artifact of the ULSDA ap-
proximation. It is well-known that LSDA wavefunctions
need not be eigenstates of Ŝ2 and ULSDA wavefunctions
need not be eigenstates of either Ŝ2 or L̂. For ex-
ample, a spin-density wave state can be obtained in
ULSDA calculations by occupying the orbitals |n, l, s〉 =
(|0, 3, 1

2 〉+ |0,−3, 1
2 〉), (|0, 3,−

1
2 〉− |0,−3,− 1

2 〉), (|1, 1,
1
2 〉+

|1,−1, 1
2 〉), (|1, 1,−

1
2 〉 − |1,−1,− 1

2 〉). (In this expression,
the l symmetry is approximate since the single-particle
orbitals are not eigenstates of l̂ for an effective potential
that is not circularly symmetric.) Such a spin density wave
is purely an artifact of the ULSDA approach. Of course
the true spin-resolved pair correlation function and the
pair correlation function exhibit oscillations as observed
in exact diagonalization and stochastic variational method
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studies [10,15], and these oscillations get stronger at large
rs, but these have only a rough qualitative resemblance to
the oscillations in the one-body spin density observed in
the ULSDA calculations. For one thing the oscillations in
the two-body spin density are present at all rs whereas
in the ULSDA calculations there is a critical rs below
which the oscillations in the one-body spin density van-
ish [7].

In order to check the sensitivity of our DMC ener-
gies to the trial wavefunctions employed, we calculated
the ground state energy of the N = 24 dot with three
different sets of orbitals, those obtained from LDA, LSDA
and ULSDA calculations. The three calculations yielded
energies that agreed with each other within the statistical
error. Also, we see little difference in the DMC energies ob-
tained with single-determinant and multiple-determinant
wave functions. Hence it appears likely that the fixed-node
errors in our calculations are smaller than the statistical
error bars.

We now compare the DMC energies to those ob-
tained from HF and LSDA using the Tanatar-Ceperley
parametrization [29] for the correlation energy of the 2-
dimensional homogeneous electron gas. For each of the
two dots, the error in the HF energies is about 20 times
larger than the error of the LSDA energies. This is be-
cause the HF approximation totally omits the correlation
energy while the LSDA approximates both exchange and
correlation, but in these quantum dots the correlation en-
ergy is not much smaller than the exchange energy [9].
Also, we note that the percent error we obtain in our HF
calculations for the |L=0, S=2〉 state of the N = 16 and
the N = 24 dots (3.0% and 2.7% respectively), are of the
same order of magnitude as the percent error obtained
in UHF calculations in reference [6]. The same analysis
made on the results included in our previous paper [9]
show that the difference between HF and DMC results
decreases with the number of electrons N from 11.7% for
N = 2 electrons to 3.3% for N = 13 electrons. Hence,
although UHF must yield lower energies than HF, the im-
provement is not large and the remaining errors are large
not only on the scale of the excitation energies but also
on the scale of the LSDA errors.

3.2 Charge and spin densities

In Figure 1 we compare the DMC and LSDA spin densities
for the ground state of the N = 16 dot. The agreement
is fairly good and the errors in the spin densities of the
two channels tend to cancel so that the total densities,
shown in Figure 2 agree better than the spin densities.
This happens in the N = 24 dot too. In Figure 2 we
also show the HF ground state density. It differs greatly
from the DMC density, in part because the HF state has
|L=0, S=0〉 symmetry, whereas the DMC state has |L=
0, S=2〉 symmetry, but also because in general it appears
that HF tends to yield densities that oscillate more than
the true density [9,30].

In Figure 3 we compare densities obtained from DMC,
LSDA and HF for the N = 24 dot. The |L=0, S=2〉 DMC
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Fig. 1. Comparison of the DMC and LSDA spin densities for
the ground state of the N = 16 dot. Solid line: DMC; dashed
line: LSDA.
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Fig. 2. Comparison of the DMC, LSDA and HF densities for
the ground state of the N = 16 dot. Solid line: DMC; dashed
line: LSDA; dot-dashed line: HF.
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Fig. 3. Comparison of the DMC, LSDA and HF densities for
the N = 24 dot. Solid line: DMC |L= 0, S = 2〉; dashed line:
LSDA |L = 0, S = 2〉; dotted line: LSDA |L = 0, S = 0〉; dot-
dashed line: HF |L=0, S=0〉.
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Table 2. DMC Energies (in effective Hartree units) of the
low-lying excited states of the N = 16 and 24 dots and their
difference with the respective ground states energy. The num-
bers in parenthesis are the statistical errors in the last digit.
The finite time-step error for the energies of the N = 24 dot
may be as large as 0.003H∗. The L= 0, S= 0 state, shown in
boldface, is the ULSDA ground state according to reference [7].

N L,S Nconf Ndet DMC Energy ∆Eexcited−ground

16 0,1 3 4 41.066(1) 0.020

4,1 2 4 41.080(1) 0.034

2,0 3 6 41.081(1) 0.035

0,0 4 8 41.088(1) 0.042

2,1 3 6 41.091(1) 0.045

6,1 1 1 41.093(1) 0.047

6,0 1 2 41.094(1) 0.048

4,0 3 5 41.101(1) 0.055

8,0 1 1 41.113(1) 0.067

24 2,2 1 1 75.995(1) 0.020

4,2 1 1 76.020(1) 0.045

0,1 6 7 76.021(1) 0.046

10,1 1 1 76.022(1) 0.047

6,0 4 8 76.023(1) 0.048

2,1 7 8 76.023(1) 0.048

12,0 1 1 76.026(1) 0.051

6,1 4 4 76.026(1) 0.051

4,0 6 12 76.036(1) 0.061

8,1 2 2 76.039(1) 0.064

8,0 3 5 76.044(1) 0.069

0,0 8 16 76.047(1) 0.072

2,0 6 14 76.052(1) 0.076

4,1 5 6 76.053(1) 0.077

ground state density agrees well with the |L = 0, S = 2〉
excited state LSDA density. It agrees less well with the
LSDA |L = 0, S = 0〉 ground state since the symmetries
are different. The HF ground state also has the wrong
symmetry and again its density has oscillations that are
too large.

3.3 Excited-state energies

In Table 2 we list the energies of the first several low-lying
excited states of the N = 16 and N = 24 dots. In the case
of quantum rings, it has been shown, from exact diagonal-
ization calculations, that the excitation spectrum is close
to that resulting from an effective Hamiltonian with rota-
tional, vibrational and spin-spin interaction terms [13]. If
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Fig. 4. Energy spectrum for the N = 16 dot as function of
the total orbital angular momentum.
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Fig. 5. Energy spectrum for the N = 24 dot as function of
the total orbital angular momentum.

the energy levels are plotted as a function of the angular
momentum, L, the lowest energy states of each L (forming
the so-called yrast line) show a roughly parabolic depen-
dence [13] on L, as one would expect for a rigid rotor.
In Figures 4 and 5 we plot our calculated energies in a
similar fashion, with the spin value shown next to each
state. It is apparent that the lowest energy states of each
L do not lie on a parabola. This is not surprising – in the
case of the quantum rings the moment of inertia is con-
strained by the radius of the rings (if they are sufficiently
narrow) and so is roughly independent of the energy level,
whereas in the case of the quantum dots, treated here, the
electrons are free to distribute themselves differently for
each energy level. In fact, Manninen et al. [14] have found
that the maximum absolute value of the wave function for
a N = 6 dot occurs for electron geometries that depend
on the angular momentum of the state.

Approximate theories, such as Hartree-Fock or the
local spin density approximation, both in the space-
restricted and space-unrestricted versions, do not correctly
predict the excitation spectra of dots. Although, as seen
from Table 1, the LSDA energies are considerably more



390 The European Physical Journal B

accurate than the HF energies, they are certainly not accu-
rate enough for this purpose. For example for the N = 16
dot, the ULSDA calculations of Koskinen et al. [7] predict
a first excitation energy of 9.05 mH∗ corresponding to a
transition from the |S = 2〉 ground state to the |S = 0〉
SDW excited state but in our calculations the lowest ex-
citation energy is 20.4 mH∗ corresponding to a transition
from the |L= 0, S = 2〉 ground state to the |L= 0, S= 1〉
excited state. For the N = 24 dot Koskinen et al. [7] find
a first excitation energy of 0.36 mH∗ from the |S = 0〉
SDW ground state to the |S = 2〉 excited state whereas
we find an excitation energy of 16.5 mH∗ corresponding
to a transition from the |L=0, S=2〉 ground state to the
|L=2, S=2〉 excited state.

4 Conclusions

We have used diffusion Monte Carlo to calculate ground
and excited state energies, and spin densities of two dots
(N = 16, 24) for which approximate calculations (UHF
and ULSDA) were available but exact diagonalization
studies are not feasible. We find that LSDA energies and
spin densities are more accurate than those from HF, but
that even LSDA does a poor job of predicting excitation
energies and can even predict the wrong symmetry for
the ground state. The LSDA spin densities are in good
agreement with DMC spin densities in the case of N = 16
where the two methods predict the same spin polarization.
Unlike the case of quantum rings, the energy levels of the
dots are not well described by an effective Hamiltonian
containing rotational, vibrational and spin-spin interac-
tion terms.

Calculations were partly performed on a Cray T3E computer
at Cineca-Bologna, Italy under an INFM grant for Parallel
Computing Initiative. We thank T. Puente and Ll. Serra for
providing us the HF code and the orbitals from the ULSDA cal-
culation. This work is funded in part by Sandia National Lab-
oratory. Sandia is a multiprogram laboratory operated by San-
dia Corporation, a Lockheed Martin Company, for the United
States Department of Energy, under Contract No.
DEAC0494AL85000.

Appendix A: Construction of S2 eigenfunctions

We wish to construct simultaneous eigenstates of L̂ ≡
L̂z, Ŝz and Ŝ2. Single determinants are eigenstates of L̂z
and Ŝz but not necessarily of Ŝ2. Consequently, we need
to diagonalize the matrix representation of Ŝ2 in the basis
of determinants having the desired Lz and Sz quantum
numbers. The following identity facilitates the calculation
of the matrix representation of Ŝ2.

A.1: The Dirac identity

For a many-electron system the total spin operator is the
sum of one-electron operators:

Ŝ =
N∑
i=1

Ŝ(i), (12)

and the square of the total spin operator is given by the
relation

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z = Ŝ+Ŝ− + Ŝ2

z − Ŝz = Ŝ−Ŝ+ + Ŝ2
z + Ŝz.

(13)

Using (12) and (13), we can write

Ŝ2 =
N∑
i=1

Ŝ2(i) + 2
N∑
i<j

[
Ŝx(i)Ŝx(j)

+Ŝy(i)Ŝy(j) + Ŝz(i)Ŝz(j)
]

=
N∑
i=1

Ŝ2(i) + 2
N∑
i<j

Ŝ(i) · Ŝ(j)

=
N∑
i=1

Ŝ2(i) +
N∑
i<j

[
Ŝ+(i)Ŝ−(j)

+Ŝ−(i)Ŝ+(j) + 2Ŝz(i)Ŝz(j)
]
.

(14)

Operating on the four primitive two-electron spin func-
tions with Ŝ(1) · Ŝ(2) yields:

[
Ŝ(1) · Ŝ(2)

]
χ↑(1)χ↑(2) = 1

4χ
↑(1)χ↑(2)

=
(
P̂σ12
2 −

Î
4

)
χ↑(1)χ↑(2)[

Ŝ(1) · Ŝ(2)
]
χ↑(1)χ↓(2) = 1

2χ
↓(1)χ↑(2)− 1

4χ
↑(1)χ↓(2)

=
(
P̂σ12
2 −

Î
4

)
χ↑(1)χ↓(2)[

Ŝ(1) · Ŝ(2)
]
χ↓(1)χ↑(2) = 1

2χ
↑(1)χ↓(2)− 1

4χ
↓(1)χ↑(2)

=
(
P̂σ12
2 −

Î
4

)
χ↓(1)χ↑(2)[

Ŝ(1) · Ŝ(2)
]
χ↓(1)χ↓(2) = 1

4χ
↓(1)χ↓(2)

=
(
P̂σ12
2 −

Î
4

)
χ↓(1)χ↓(2) (15)

where P̂σ12 is the spin permutation operator. So, we obtain
the Dirac identity

Ŝ(1) · Ŝ(2)χ(1, 2) =

(
P̂σ12

2
− Î

4

)
χ(1, 2), (16)
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or,

Ŝ2χ(1, 2) =
(
Î + P̂σ12

)
χ(1, 2), (17)

where χ(1, 2) is an arbitrary two-electron spin functions.
In the many-electron case we obtain from equations (14)
and (16):

Ŝ2χ(1, . . . , N) = N∑
i=1

Ŝ2(i) + 2
N∑
i<j

Ŝ(i) · Ŝ(j)

χ(1, . . . , N)

=

N 3
4
Î + 2

 N∑
i<j

P̂σij
2
− N(N − 1)

2
Î

4

χ(1, . . . , N)

=

−N(N − 4)
4

Î +
N∑
i<j

P̂σij

χ(1, . . . , N),
(18)

where χ(1, . . . , N) is an arbitrary spin function in the 2N -
dimensional spin space of N electrons. The matrix ele-
ments of Ŝ2 can be calculated from either equation 14 or
equation 18, the latter being somewhat simpler.

A.2: An example

As an example, we construct the L=4, S=1 configuration
state functions of the 24-electron dot. There are N = 4
open-shell electrons and (18) reduces to

Ŝ2χ =
∑
i<j

P̂σijχ. (19)

There are six determinants with L=4 and Sz = 1:

D↑1 D
↓
1 = |4↑, 2↑,−2↑| |0↓|

D↑2 D
↓
2 = |4↑, 2↑, 0↑| |2↓|

D↑3 D
↓
3 = |4↑,−2↑, 0↑| |2↓|

D↑4 D
↓
4 = |2↑,−2↑, 0↑| |4↓|

D↑5 D
↓
5 = |4↑,−4↑, 2↑| |2↓|

D↑6 D
↓
6 = |4↑,−4↑, 0↑| |4↓|. (20)

The matrix representation of the operator Ŝ2 is

Ŝ2 =


3 1 1 1 0 0
1 3 1 1 0 0
1 1 3 1 0 0
1 1 1 3 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 (21)

and its eigenvalues and eigenvectors are

Eigenvalue S(S + 1) Eigenvectors

χ1, χ2, χ3, χ4, χ5, χ6

2
(i.e. S=1)


(−1, 1, 0, 0, 0, 0)
(−1, 0, 1, 0, 0, 0)
(−1, 0, 0, 1, 0, 0)
(0, 0, 0, 0, 1, 0)
(0, 0, 0, 0, 0, 1)

6
(i.e. S=2)

{
(1, 1, 1, 1, 0, 0).

(22)

Consequently,

ΞS=1
L=4 = β1χ1 + β2χ2 + β3χ3 + β4χ4 + β5χ5 + β6χ6 (23)

where β1 = −β3 − β4 − β5. Note that as a by-product
we have obtained also the eigenfunction of the L= 4, S=
2, Sz = 1 state. However, this is a 4-determinant function
and since the energies are independent of Sz it is preferable
to use the 1-determinant eigenfunction of the L= 4, S =
2, Sz=2 state.
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