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Methods and results for calculations of the ground state energy of the bulk
system of 3He atoms are discussed. Results are encouraging: we believe
that they demonstrate that our methods offer a solution of the “fermion sign
problem” and the possibility of direct computation of many-fermion systems
with no uncontrolled approximations. Although the method is still rather
inefficient compared to variational or fizred-node methods, we have been able
to obtain useful answers.
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1. INTRODUCTION

Powerful Monte Carlo methods ! can provide estimates of ground state
properties of bosonic many-body systems that are not subject to uncon-
trolled approximations. But the mapping of the many-body quantum wave-
function to a probability distribution function faces severe challenges when
considering the global antisymmetry that a fermionic wavefunction must sat-
isfy. The methods that we have adopted to face this “fermion sign problem”
2 are based on a population of pairs of positive and negative walkers which
is generated using Diffusion Monte Carlo modified in the following ways:

(1) Different guiding functions are used for walkers of different signs;

(2) When walkers of different signs branch differently (as they must)
new pairs are created;

(3) The “diffusion” steps of the walkers in a pair are correlated;

(4) Walkers in a pair that come close can be canceled in a way that
guarantees that the future value of any projection with an antisymmetric
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function is exactly preserved;

(5) We have been able to adapt the technique of “acceptance-rejection”
to our method.

(6) We have experimented with “second-stage importance sampling”
(SSIS), in which a function of the coordinates of both walkers of a pair is
used to modify the distribution of the walkers.

2. THE METHOD

Let us consider a system of N atoms of which the coordinates of the ith
particle are represented by a tridimensional vector r;. The atoms interact
with one another via two- and three-body forces summarized by a potential
V(ri,...rn). Our primary interest is in the ground state energy Fy of the
system, for which we need to solve the many-body Schrodinger equation.
Diffusion Monte Carlo follows the evolution in imaginary time; using atomic
units, this equation translates into

_%VQ LV(R) - ET} (R, 7) = —L(;:’ ™) (1)

which is a diffusion and absorption equation, solved by iterating an appropri-
ate Green'’s function G(R, R/, d7) on the 3N-dimensional vector R'(z1, ..., z3n)
that represents a whole configuration (“walker”) of the system,

R, T+ 67) = / G(R, R, 57)(R/, 7)dR’ @)

At each step ¥(R, 7) is represented by an ensemble of discrete points {R,, }
that are then advanced and reproduced or removed according to G(R, R/, 67).
In the limit of sufficiently long imaginary-time 7, only the term with the low-
est energy survives

P(R,T) = Noe "Eo=Er) g (R) 3)

and, if By = Ejy, the walkers {R, } are sampled from a stationary probability
density distribution that maps the symmetric ground state ¢g(R).

In order to improve the efficiency of this filtering of the solution, one
introduces a known trial wavefunction ¢y (R) with the aim of changing the
sampling process in a known way 3 while preserving averages. In our FMC
algorithm this concept is split into two separate auxiliary functions: a strictly
positive guiding function 1 (R) whose role is to modify the random walk,
while an antisymmetric trial function 7 (R) that should resemble the solu-
tion as closely as possible is used to project out quantities of interest, such
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as the local energy Er. Thus the density of walkers generated by the walk
will be

FRT) = YRR, T da(R)do(R) (4)

T — 00
We separate now the set {R, } of walkers into two subsets of walkers {R} },

{R,,} that respectively add or subtract their contributions to statistical
expectations such as the energy
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where N, is the number of pairs of configurations that enter the averaging. If
the signed walkers independently sample the configuration space according
to the distribution (4) the result will be the decay of Monte Carlo signal
to noise ratio characteristic of the “fermion sign problem.” In particular
the denominator of Eq. (5) will be unstable since the {R;}} and the {R,,}
will be symmetrically distributed, averaging their contributions around zero.
The incorporation of a correlation between pairs of walkers in the random-
walk process has been shown to be effective in avoiding this decay of the
signal-to-noise ratio that regularly occurs in a fermionic DMC 4®. Before
introducing correlation, we first start by distinguishing the signed walkers
by means of different y’s which we call wg respectively.

In FMC we introduce two functions 1/1({5 which bias differently the popu-
lations of plus and minus walkers and thus act as symmetry breaking fields.
The ingredients of our guiding functions are Slater Determinants DT of
like-spin single particle wavefunctions, and two symmetric Jastrow products,
J%(R) and JA(R) with different parameters. We now construct a function
antisymmetric under permutation of atom labels

Ya(R) = JA(R)D'(R)D'(R) (6)

and a symmetric one
vs(R) = J°(R) (7)

Finally, the guiding functions themselves are constructed by combining (6)
and (7):

VER) = \JA(R) + YA (R) £ ca(R) ()

with ¢ a small and adjustable parameter. The functions wg are positive for
any R, as is necessary for an importance function. For an odd permutation
of particles in a configuration one has that the biased distributions of the
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two signed walkers map into each other.
The orbitals of our Slater determinants comprise the standard backflow
function®, while the Jastrow products provide two-body correlations via a
pseudopotential of the McMillan type and three-body correlations.
The diffusion process for the distribution (4), is generalized as follows: the
two wé are applied separately to drift the walkers of a pair from their old
positions R, R, :
Vi (Rs) ©
v (Ro) |

We make use of correlated dynamics in the pairs diffusion. The branch-
ing of the pairs is carried out taking into account the possibility of an overlap
of the members of a pair, which leads to a partial cancellation of the contri-
bution of the pair to the future statistics. Since the weights w(R¥) - which
express the branching factor of the single walkers - in a pair can be differ-
ent at each generation, a mechanism for repairing the lone walker must be
introduced. Details of this algorithm can be found in Refs.”8

Quantities of interest, such as the total energy, are projected out by
using a trial wave function. In our FMC method that role is played by
the antisymmetric function ¥4 of Eq. (6). To account for the branching
process, each pair may contribute once weighted with w(R}:) and Eq. (5)
then becomes:

Ry =R + 207

N, {ﬁﬂ)A(R%)w(R—k) _ ﬁd)A(RﬁL)w( —)}

m (R, (R, m
o= T(R:) + /w(;r)) : (10)
A\Ttm _ YaRpy -
m L’JG(R}LJW(RM) w(;(R;L)w<Rm)}

In order to improve the efficiency of our method we introduced and
experimented with several classes of technical improvements.

The first was an adaptation to the correlated diffusion of pairs of walk-
ers of the “Acceptance/Rejection” (A/R) method widely used in fixed-node
computations %19,

The second was a class of refinements that we refer to collectively as
“second-stage importance sampling.” Here we took note of the general char-
acter of importance sampling for random walks, namely that the stochastic
dynamics should be biased by a function proportional to the chance that a
walker contributes to the asymptotic distribution, namely the steady state
of the population. That steady state can be measured by the denominator
of the energy quotient. Quite clearly, the needed function depends on the
positions of both of our walkers, a fact not accounted for in the method
described above.

We tried several forms of second-stage importance functions with and
without A/R, and found significant but not decisive improvements. Nev-
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Fig. 1. Effect of the amount of antisymmetry (measured by ¢ in Eq. (8))
in the guiding function. Top: cumulative denominator; Bottom: cumulative
energy. These runs have been obtained with A/R, SSIS and 67 = 6 x 1075,

ertheless, we believe that the path to much better efficiency lies in better
importance sampling of the dynamics and are actively pursuing new ideas.

3. RESULTS

Table 1 shows average results for the various runs. In particular it is
shown that even with a small population of 192 pairs, a long FMC run
with SSIS and A/R gives results that are comparable with the fixed node
ones. Figure 1 shows the behavior of a typical run for 54 3He atoms. Top
panel shows the behavior of the cumulative denominator. The growth is an
indication of the stability of the run. In the bottom panel the cumulative
value of the projected energy is shown. As can be seen, fluctuations are
rather large but a clear converging behavior emerges.
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Table 1. FMC results with respect to parameters used; “denom” refers to a
S-shaped SSIS function of the denominator; “eucl” to a SSIS linear function
of the euclidean distance between the walkers). 7,.; denotes the relaxation
time. Note that no extrapolation to zero time step has been calculated.
Bottom line: fixed node result.

N, c drinK' A/R SSIS lengthinrt,, E(AE)inK

192 1002 6x10° yes denom 16 -2.24(3)
192 1002 6x107°  yes no 20 -2.26(13)
192 1002 6x107° yes  eucl 11 -2.215(12)
192 1072 6x107° no denom 25 -2.24(14)
192 1002 6x107°  yes denom 25 -2.38(3)
192 FXN 6x10®  yes denom 10 -2.369(2)
ACKNOWLEDGMENTS

We gratefully thank David Ceperley, Geoffrey Chester, Berni Alder,
Joseph Carlson, Kevin Schmidt, and Randolph Hood for stimulating com-
ments. We are also indebted to David Hardin for a critical review of the
manuscript. This work was performed under the auspices of the U.S. De-
partment of Energy by the University of California, Lawrence Livermore
National Laboratory under contract No. W-7405-Eng.-4, and funded by
the Laboratory Directed Research and Development (LDRD) Program at
Lawrence Livermore National Laboratory (LLNL) under project 01-LW-040.

REFERENCES

. D. M. Ceperley, Rev. Mod. Phys. 78, 279 (1995).

. J. B. Anderson, J. Chem. Phys. 63, 1499 (1975).

. M. H. Kalos, D. Levesque and L. Verlet, Phys. Rev. A 9 , 2178 (1974).

M. H. Kalos, Phys. Rev. E 53, 5420 (1996).

Z. Liu, S. Zhang and M. H. Kalos, Phys. Rev. E 50, 3220 (1994).

K. E. Schmidt, M. A. Lee, M. H. Kalos and G. V. Chester, Phys. Rev. Lett. 47,

807 (1995).

7. M. H. Kalos and F. Pederiva, Proceedings of the NATO-ASI Conference Quantum
Monte Carlo methods in Physics and Chemistry, ed. by M. P. Nightingale and
C. J. Umrigar, Kluwer, Dordrecht, The Netherlands (1999)

8. M. H. Kalos and F. Pederiva, Phys. Rev. Lett. 85, 3547 (2000)

9. P. J. Reynolds, D. M. Ceperley, B. J. Alder and W. A. Lester, Jr., J. Chem.
Phys. 77, 5593 (1982).

10. C. J. Umrigar, M. P. Nightingale and K. J. Runge, J. Chem. Phys. 99, 2865

(1993).

S T W



