ON REGULAR HARMONICS OF ONE QUATERNIONIC VARIABLE

A. PEROTTI

Abstract. We prove some results about the Fueter-regular homogeneous polynomials, which appear as components in the power series of any quaternionic regular function. We obtain a differential condition that characterizes the homogeneous polynomials whose trace on the unit sphere extends as a regular polynomial. We apply this result to define an injective linear operator from the space of complex spherical harmonics to the module of regular homogeneous polynomials of a fixed degree k.

1. Introduction

Let B denote the unit ball in $\mathbb{C}^2 \simeq \mathbb{H}$ and $S = \partial B$ the group of unit quaternions. In §3.1 we obtain a differential condition that characterizes the homogeneous polynomials whose restriction to S coincides with the restriction of a regular polynomial. This result generalizes a similar characterization for holomorphic extensions of polynomials proved by Kytmanov (cf. [2] and [3]).

In §3.2 we show how to define an injective linear operator $R : \mathcal{H}_k(S) \rightarrow U^\psi_k$ from the space $\mathcal{H}_k(S)$ of complex-valued spherical harmonics of degree k to the \mathbb{H}-module U^ψ_k of ψ-regular homogeneous polynomials of the same degree (cf. §2.2 and §3.2 for precise definitions). In particular, we show how to construct bases of the module of regular homogeneous polynomials of a fixed degree starting from any choice of \mathbb{C}-bases of the spaces of complex harmonic homogeneous polynomials.

This work was partially supported by MIUR (Project “Proprietà geometriche delle varietà reali e complesse”) and GNSAGA of INdAM.

2. Notations and definitions

2.1. Let $\Omega = \{ z \in \mathbb{C}^2 : \rho(z) < 0 \}$ be a bounded domain in \mathbb{C}^2 with smooth boundary. Let ν denote the outer unit normal to $\partial \Omega$ and $\tau = i\nu$. For every $F \in C^1(\Omega)$, let $\overline{\partial}_n F = \frac{1}{2} \left(\frac{\partial F}{\partial \nu} + i \frac{\partial F}{\partial \tau} \right)$ be the normal component of $\overline{\partial} F$ (see Kytmanov [2]§§3.3 and 14.2). It can be expressed by means of the Hodge \ast-operator and the Lebesgue surface measure as $\overline{\partial}_n f d\sigma = \ast \overline{\partial} F |_{\partial \Omega}$. In a neighbourhood of $\partial \Omega$ we have the decomposition of $\overline{\partial} F$ in the tangential and the normal parts:

1991 Mathematics Subject Classification. 32A30, 30G35, 32V10, 32W05.
Key words and phrases. Quaternionic regular functions, spherical harmonics.
\[\partial F = \overline{\partial} F + \mathrm{d} \wedge \overline{\partial} F. \]

We denote by \(L \) the tangential Cauchy-Riemann operator
\[L = \frac{1}{\partial \rho} \left(\frac{\partial}{\partial z} \sigma_{12} + \frac{\partial}{\partial z} \sigma_{13} \right). \]

Let \(\mathbb{H} \) be the algebra of quaternions \(q = x_0 + ix_1 + jx_2 + kx_3 \), where \(x_0, x_1, x_2, x_3 \) are real numbers and \(i, j, k \) denote the basic quaternions. We identify the space \(\mathbb{C}^2 \) with the set \(\mathbb{H} \) by means of the mapping that associates the quaternion \(q = z_1 + z_2j \) to \((z_1, z_2) = (x_0 + ix_1, x_2 + ix_3)\). We refer to Sudbery [8] for the basic facts of quaternionic analysis. We will denote by \(D \) the left Cauchy-Riemann-Fueter operator
\[D = \frac{\partial}{\partial x_0} + i \frac{\partial}{\partial x_1} + j \frac{\partial}{\partial x_2} + k \frac{\partial}{\partial x_3}. \]

A quaternionic \(C^1 \) function \(f = f_1 + f_2j \), is \(\text{(left-)regular} \) on a domain \(\Omega \subseteq \mathbb{H} \) if \(Df = 0 \) on \(\Omega \). We prefer to work with another class of regular functions, which is more explicitly connected with the hyperkähler structure of \(\mathbb{H} \). It is defined by the Cauchy-Riemann-Fueter operator associated to the structural vector \(\psi = \{1, i, j, -k\} \):
\[D' = \frac{\partial}{\partial x_0} + i \frac{\partial}{\partial x_1} + j \frac{\partial}{\partial x_2} - k \frac{\partial}{\partial x_3} = 2 \left(\frac{\partial}{\partial z_1} + j \frac{\partial}{\partial z_2} \right). \]

A quaternionic \(C^1 \) function \(f = f_1 + f_2j \), is called \(\text{(left-)}\psi\text{-regular} \) on a domain \(\Omega \), if \(D'f = 0 \) on \(\Omega \). This condition is equivalent to the following system of complex differential equations:
\[\frac{\partial f_1}{\partial z_1} = \frac{\partial f_2}{\partial z_2}, \quad \frac{\partial f_1}{\partial z_2} = -\frac{\partial f_2}{\partial z_1}. \]

The identity mapping is \(\psi \)-regular, and any holomorphic mapping \((f_1, f_2)\) on \(\Omega \) defines a \(\psi \)-regular function \(f = f_1 + f_2j \). This is no more true if we replace \(\psi \)-regularity with regularity. Moreover, the complex components of a \(\psi \)-regular function are either both holomorphic or both non-holomorphic (cf. Vasilevski [9], Mitelman et al [4] and Perotti [5]). Let \(\gamma \) be the transformation of \(\mathbb{C}^2 \) defined by \(\gamma(z_1, z_2) = (z_1, z_2) \). Then a \(C^1 \) function \(f \) is regular on the domain \(\Omega \) if, and only if, \(f \circ \gamma \) is \(\psi \)-regular on \(\gamma^{-1}(\Omega) \).

2.2. The two-dimensional Bochner-Martinelli form \(U(\zeta, z) \) is the first complex component of the Cauchy-Fueter kernel \(G'(p - q) \) associated to \(\psi \)-regular functions (cf. Fueter [1], Vasilevski [9], Mitelman et al [4]). Let \(q = z_1 + z_2j, p = \zeta_1 + \zeta_2j, \sigma(q) = dq[0] - i dx[1] + j dx[2] + kdx[3] \), where \(dx[k] \) denotes the product of \(dx_0, dx_1, dx_2, dx_3 \) with \(dx_k \) deleted. Then \(G'(p - q) \sigma(p) = U(\zeta, z) + \omega(\zeta, z)j \), where \(\omega(\zeta, z) \) is the complex \((1, 2)\)-form
\[\omega(\zeta, z) = -\frac{1}{4\pi^2} |\zeta - z|^{-4}((\overline{\zeta} - \overline{z})d\zeta_1 + (\overline{\zeta} - \overline{z})d\zeta_2) \wedge \overline{\zeta}. \]

Here \(\overline{\zeta} = \overline{\zeta_1} \wedge \overline{\zeta_2} \) and we choose the orientation of \(\mathbb{C}^2 \) given by the volume form \(\frac{1}{4} dz_1 \wedge dz_2 \wedge dx_1 \wedge dx_2 \). Given \(g(\zeta, z) = \frac{1}{4\pi^2} |\zeta - z|^{-2} \), we can also write \(U(\zeta, z) = -2 \ast \partial_\zeta g(\zeta, z) \) and \(\omega(\zeta, z) = -\partial_\zeta (g(\zeta, z)\overline{\zeta}). \)
3. Regular polynomials

3.1. In this section we will obtain a differential condition that characterizes the homogeneous polynomials whose restrictions to the unit sphere extend regularly or \(\psi \)-regularly. We will use a computation made by Kytmanov in [3] (cf. also [2] Corollary 23.4), where the analogous result for holomorphic extensions is proved.

Let \(\Omega \) be the unit ball \(B \) in \(\mathbb{C}^2 \), \(S = \partial B \) the unit sphere. In this case the operators \(\overline{\partial}_n \) and \(L \) have the following forms:

\[
\overline{\partial}_n = \bar{z}_1 \frac{\partial}{\partial z_1} + \bar{z}_2 \frac{\partial}{\partial z_2}, \quad L = z_2 \frac{\partial}{\partial z_1} - z_1 \frac{\partial}{\partial z_2}
\]

and they preserve harmonicity. Let \(\Delta = \frac{\partial^2}{\partial z_1 \partial \bar{z}_1} + \frac{\partial^2}{\partial z_2 \partial \bar{z}_2} \) be the Laplacian in \(\mathbb{C}^2 \) and \(D_k \) the differential operator

\[
D_k = \sum_{0 \leq l \leq k/2-1} \frac{(k - 2l - 1)!(2l - 1)!}{k!(l + 1)!} 2^l \Delta^{l+1}.
\]

Theorem 1. Let \(f = f_1 + f_2 j \) be a \(\mathbb{H} \)-valued, homogeneous polynomial of degree \(k \). Then its restriction to \(S \) extends as a \(\psi \)-regular function into \(B \) if, and only if,

\[
(\overline{\partial}_n - D_k) f_1 + L(f_2) = 0 \quad \text{on } S.
\]

Proof. In the first part we can proceed as in [3]. The harmonic extension \(\tilde{f}_1 \) of \(f_1 \) into \(B \) is given by Gauss’s formula: \(\tilde{f}_1 = \sum_{s \geq 0} g_{k-2s} \), where \(g_{k-2s} \) is the homogeneous harmonic polynomial of degree \(k - 2s \) defined by

\[
g_{k-2s} = \frac{k - 2s + 1}{s!(k - s + 1)!} \sum_{j \geq 0} \frac{(-1)^j (k - j - 2s)!}{j!} |z|^{2j} \Delta^{j+s} f_1.
\]

Then \(\overline{\partial}_n \tilde{f}_1 = \overline{\partial}_n f_1 - D_k f_1 \) on \(S \) (cf. [2] §23). Let \(\tilde{f}_2 \) be the harmonic extension of \(f_2 \) into \(B \) and \(\tilde{f} = \tilde{f}_1 + \tilde{f}_2 j \). Then \((\overline{\partial}_n - D_k) f_1 + L(f_2) = 0 \) on \(S \) is equivalent to \(\overline{\partial}_n \tilde{f}_1 + L(f_2) = 0 \) on \(S \). We now show that this implies the \(\psi \)-regularity of \(\tilde{f} \). Let \(F^+ \) and \(F^- \) be the \(\psi \)-regular functions defined respectively on \(B \) and on \(\mathbb{C}^2 \setminus \overline{B} \) by the Cauchy-Fueter integral of \(\tilde{f} \):

\[
F^\pm(z) = \int_S U(\zeta, z) \tilde{f}(\zeta) + \int_S \omega(\zeta, z) j \tilde{f}(\zeta).
\]

From the equalities \(U(\zeta, z) = -2 \ast \partial_\zeta g(\zeta, z), \omega(\zeta, z) = -\partial_\zeta (g(\zeta, z) d\zeta) \), we get that

\[
F^+(z) = -2 \int_S (\tilde{f}_1(\zeta) + f_2(\zeta) j) \ast \partial_\zeta g(\zeta, z) - \int_S \partial_\zeta (g(\zeta, z) d\zeta)(\overline{\tilde{f}_1} j - \overline{f_2})
\]

for every \(z \notin \overline{B} \). From the complex Green formula and Stokes’ Theorem and from the equality \(\overline{\partial}_n f_1 \wedge d\zeta|_S = 2L(f_2) d\sigma \) on \(S \), we get that the first complex
component of $F^-(z)$ is
\[-2\int_S f \bar{\partial}_n g d\sigma + \int_S f_2 \bar{\partial}_2 g \wedge d\bar{c} = -2\int_S g \bar{\partial}_n f_1 d\sigma - \int_S g \partial_\xi f_2 \wedge d\bar{c} \]
\[= -2\int_S g(\bar{\partial}_n f_1 + L(f_2)) d\sigma \]
and then it vanishes on $C^2 \setminus \mathcal{B}$. Therefore, $F^- = F_{2j}$, with F_2 a holomorphic function that can be holomorphically continued to the whole space. Let $\tilde{F}^- = \tilde{F}_{2j}$ be such extension. Then $F = F^+ - \tilde{F}^\mathcal{B}$ is a ψ-regular function on \mathcal{B} (indeed a polynomial of the same degree k), continuous on \mathcal{B}, such that $F|_S = f|_S$. The converse is immediate from the equations of ψ-regularity.

Let N and T be the differential operators
\[N = \bar{z}_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2}, \quad T = z_1 \frac{\partial}{\partial z_1} - z_2 \frac{\partial}{\partial z_2}. \]

T is a tangential operator w.r.t. S, while N is non-tangential, such that $N(\rho) = |\bar{\partial}|^2 \rho$, $\text{Re}(N) = |\partial| \text{Re}(\bar{\partial}_n)$, where $\rho = |z_1|^2 + |z_2|^2 - 1$. Let γ be the reflection introduced at the end of §1.1. The operator D_γ is γ-invariant, i.e. $D_\gamma(f \circ \gamma) = D_\gamma(f) \circ \gamma$, since Δ is invariant. It follows a criterion for regularity of homogeneous polynomials.

Corollary 2. Let $f = f_1 + f_{2j}$ be a \mathbb{H}-valued, homogeneous polynomial of degree k. Then its restriction to S extends as a regular function into \mathcal{B} if, and only if,
\[(N - D_\gamma)f_1 + T(f_2) = 0 \quad \text{on } S. \]

Let $g = \sum_k g^k$ be the homogeneous decomposition of a polynomial g. After replacing $D_k g$ by $\sum_k D_k g^k$, we can extend the preceding results also to non-homogeneous polynomials.

3.2. Let \mathcal{P}_k denote the space of homogeneous complex-valued polynomials of degree k on C^2, and \mathcal{H}_k the space of harmonic polynomials in \mathcal{P}_k. The space \mathcal{H}_k is the sum of the pairwise $L^2(S)$-orthogonal spaces $\mathcal{H}_{k,p}$ ($p + q = k$), whose elements are the harmonic homogeneous polynomials of degree p in z_1, z_2 and q in \bar{z}_1, \bar{z}_2 (cf. for example Rudin [7], §12.2). The spaces \mathcal{H}_k and $\mathcal{H}_{p,q}$ can be identified with the spaces of the restrictions of their elements to S (spherical harmonics). These spaces will be denoted by $\mathcal{H}_k(S)$ and $\mathcal{H}_{p,q}(S)$ respectively.

Let U^ψ_k be the right \mathbb{H}-module of (left)ψ-regular homogeneous polynomials of degree k. The elements of the modules U^ψ_k can be identified with their restrictions to S, which we will call regular harmonics.

Theorem 3. For every $f_1 \in \mathcal{P}_k$, there exists $f_2 \in \mathcal{P}_k$ such that the trace of $f = f_1 + f_{2j}$ on S extends as a ψ-regular polynomial of degree at most k on \mathbb{H}. If $f_1 \in \mathcal{H}_k$, then $f_2 \in \mathcal{H}_k$ and $f = f_1 + f_{2j} \in U^\psi_k$.
Proof. We can suppose that f_1 has degree p in z and q in \bar{z}, $p + q = k$, and then extend by linearity. Let $\tilde{f}_1 = \sum_{s \geq 0} g_{p-s,q-s}$ be the harmonic extension of f_1 into B, where $g_{p-s,q-s} \in \mathcal{H}_{p-s,q-s}$ is given by formula (*). Then $\overline{\partial}_n L(g_{p-s,q-s}) = (p - s + 1)L(g_{p-s,q-s})$. We set
\[
\tilde{f}_2 = \sum_{s \geq 0} \frac{1}{p - s + 1} L(g_{p-s,q-s}) \in \bigoplus_{s \geq 0} \mathcal{H}_{k-2s}.
\]
Then $\overline{\partial}_n \tilde{f}_2 = \overline{L(f_1)}$ on S and we can conclude as in the proof of Theorem 1 that $\tilde{f} = \tilde{f}_1 + \tilde{f}_2 j$ is a ψ-regular polynomial of degree at most k. Now it suffices to define
\[
f_2 = \sum_{s \geq 0} \frac{|z|^{2s}}{p - s + 1} L(g_{p-s,q-s}) \in \mathcal{P}_k
\]
to get a homogeneous polynomial $f = f_1 + f_2 j$, of degree k, that has the same restriction to S as \tilde{f}. If $f_1 \in \mathcal{H}_k$, then $\tilde{f}_1 = f_1$, $\tilde{f}_2 = f_2$ and therefore $f \in U^\psi_k$. □

Let $C : U^\psi_k \to \mathcal{H}_k(S)$ be the complex-linear operator that associates to $f = f_1 + f_2 j$ the restriction to S of its first complex component f_1. The function \tilde{f} in the preceding proof gives a right inverse $R : \mathcal{H}_k(S) \to U^\psi_k$ of the operator C. The function $R(f_1)$ is uniquely determined by the orthogonality condition with respect to the functions holomorphic on a neighbourhood of B:
\[
\int_S (R(f_1) - f_1) \bar{h} d\sigma = 0 \quad \forall h \in O(B).
\]

Corollary 4. (i) The restriction operator C defined on U^ψ_k induces isomorphisms of real vector spaces
\[
U^\psi_k / \mathcal{H}_{k,0} \cong \mathcal{H}_k(S), \quad U^\psi_k / \mathcal{H}_{k,0} + \mathcal{H}_{k,0} \cong \mathcal{H}_k(S) / \mathcal{H}_{k,0}(S).
\]
(ii) U^ψ_k has dimension $\frac{1}{2}(k + 1)(k + 2)$ over \mathbb{H}.

Proof. The first part follows from $ker C = \{ f = f_1 + f_2 j : f_1 = 0 \text{ on } S \} = \mathcal{H}_{k,0}$. Part (ii) can be obtained from any of the above isomorphisms, since $\mathcal{H}_{k,0}$ (as every space $\mathcal{H}_{p,q}, p + q = k$) and $\mathcal{H}_k(S)$ have real dimensions respectively $2(k + 1)$ and $2(k + 1)^2$. □

As an application of Corollary 2, we have another proof of the known result (cf. Sudbery [8] Theorem 7) that the right \mathbb{H}-module U_k of left-regular homogeneous polynomials of degree k has dimension $\frac{1}{2}(k + 1)(k + 2)$ over \mathbb{H}.
3.3. The operator $R : \mathcal{H}_k(S) = \bigoplus_{p+q=k} \mathcal{H}_{p,q}(S) \rightarrow U_k^\psi$ can also be used to obtain H-bases for U_k^ψ starting from bases of the complex spaces $\mathcal{H}_{p,q}(S)$. On $\mathcal{H}_{p,q}(S)$, R acts in the following way:

$$R(h) = h + M(h)j, \text{ where } M(h) = \frac{1}{p+1}L(h) \in \mathcal{H}_{q-1,p+1} \ (h \in \mathcal{H}_{p,q})$$

Note that $M \equiv 0$ on $\mathcal{H}_{k,0}(S)$. If $q > 0$, $M^2 = -Id$ on $\mathcal{H}_{p,q}(S)$, since $qh = \overline{\partial_n}h = -L(M(h))$ on S, and therefore

$$h = -\frac{1}{q}L(M(h)) = -\frac{1}{q(p+1)}LL(h) = -M^2(h).$$

If $k = 2m+1$ is odd, then M is a complex conjugate isomorphism of $\mathcal{H}_{m,m+1}(S)$. Then M induces a quaternionic structure on this space, which has real dimension $4(m+1)$. We can find complex bases of $\mathcal{H}_{m,m+1}(S)$ of the form

$$\{h_1, M(h_1), \ldots, h_{m+1}, M(h_{m+1})\}.$$

Theorem 5. Let $B_{p,q}$ denote a complex base of the space $\mathcal{H}_{p,q}(S)$ ($p + q = k$). Then:

(i) if $k = 2m$ is even, a basis of U_k^ψ over \mathbb{H} is given by the set

$$B_k = \{R(h) : h \in B_{p,q}, p + q = k, 0 \leq q \leq p \leq k\}.$$

(ii) if $k = 2m + 1$ is odd, a basis of U_k^ψ over \mathbb{H} is given by

$$B_k = \{R(h) : h \in B_{p,q}, p + q = k, 0 \leq q < p \leq k\} \cup \{R(h_1), \ldots, R(h_{m+1})\},$$

where h_1, \ldots, h_{m+1} are chosen such that the set

$$\{h_1, M(h_1), \ldots, h_{m+1}, M(h_{m+1})\}$$

forms a complex basis of $\mathcal{H}_{m,m+1}(S)$.

If the bases $B_{p,q}$ are orthogonal in $L^2(S)$ and $h_1, \ldots, h_{m+1} \in \mathcal{H}_{m,m+1}(S)$ are mutually orthogonal, then B_k is orthogonal, with norms

$$\|R(h)\|_{L^2(S, \mathbb{H})} = \left(\frac{p + q + 1}{p + 1}\right)^{1/2} \|h\|_{L^2(S)} \ (h \in B_{p,q})$$

w.r.t. the scalar product of $L^2(S, \mathbb{H})$.

Proof. From dimension count, it suffices to prove that the sets B_k are linearly independent. When $q \leq p$, $q' \leq p'$, $p + q = p' + q' = k$, the spaces $\mathcal{H}_{p,q}$ and $\mathcal{H}_{q'-1,p'+1}$ are distinct. Since $R(h) = h + M(h)j \in \mathcal{H}_{p,q} \oplus \mathcal{H}_{q-1,p+1}$, this implies the independence over \mathbb{H} of the images $\{R(h) : h \in B_{p,q}\}$. It remains to consider the case when $k = 2m + 1$ is odd. If $h \in \mathcal{H}_{m,m+1}(S)$, the complex components h and $M(h)$ of $R(h)$ belong to the same space. The independence of $\{R(h_1), \ldots, R(h_{m+1})\}$ over \mathbb{H} follows from the particular form of the complex basis chosen in $\mathcal{H}_{m,m+1}(S)$.
The scalar product of $L(h)$ and $L(h')$ in $\mathcal{H}_{p,q}(S)$ is

$$(L(h), L(h')) = (h, L^*(L(h'))) = q(p+1)(h, h'),$$

since the adjoint L^* is equal to $-\bar{T}$ (cf. [7], §18.2.2) and $T L = q(p+1)M^2 = -q(p+1)I_d$. Therefore, if h, h' are orthogonal, $M(h)$ and $M(h')$ are orthogonal in $\mathcal{H}_{q-1,p+1}$ and then also $R(h)$ and $R(h')$. Finally, the norm of $R(h)$, $h \in \mathcal{H}_{p,q}(S)$, is

$$\|R(h)\|^2 = \|h\|^2 + |M(h)|^2 = \|h\|^2 + \frac{1}{(p+1)^2}\|L(h)\|^2 = \frac{p+q+1}{p+1}\|h\|^2$$

and this concludes the proof. \(\square\)

From Theorem 3 it is immediate to obtain also bases of the right \mathbb{H}-module U_k of left-regular homogeneous polynomials of degree k.

Examples. (i) The case $k = 2$. Starting from the orthogonal bases $B_{2,0} = \{z_1^2, 2z_1z_2, z_2^2\}$ of $\mathcal{H}_{2,0}$ and $B_{1,1} = \{z_1z_2, |z_1|^2 - |z_2|^2, z_2z_1\}$ of $\mathcal{H}_{1,1}$ we get the orthogonal basis of regular harmonics

$$B_2 = \{z_1^2, 2z_1z_2, z_2^2, z_1z_2 - \frac{1}{2}z_2^2 j, |z_1|^2 - |z_2|^2, z_2z_1 + \frac{1}{2}z_2^2 j\}$$

of the six-dimensional right \mathbb{H}-module U_2°.

(ii) The case $k = 3$. From the orthogonal bases $B_{3,0} = \{z_1^3, 3z_1^2 z_2, 3z_1z_2^2, z_2^3\}$, $B_{2,1} = \{z_1^2 z_2, 2z_1|z_2|^2 - z_1^2|z_1|^2, 2z_2|z_1|^2 - z_2^2|z_2|^2, z_2^2 z_1\}$, $B_{1,2} = \{h_1 = z_1 z_2^2, M(h_1) = -z_2 z_1^2, h_2 = 2z_2|z_2|^2 + z_2^2, M(h_2) = -2z_1|z_2|^2 + z_1^2|z_1|^2\}$, we get the orthogonal basis of regular harmonics

$$B_3 = \{z_1^3, 3z_1^2 z_2, 3z_1z_2^2, z_2^3, z_1^2 z_2 - \frac{1}{3}z_2^3 j, 2z_1|z_2|^2 - z_1^2|z_1|^2 - z_1^2 z_2 j, 2z_2^2|z_1|^2 - z_2^2|z_2|^2 + z_1^2 z_2^2 j\}$$

of the ten-dimensional right \mathbb{H}-module U_3°.

In general, for any k, an orthogonal basis of $\mathcal{H}_{p,q}$ ($p + q = k$) is given by the polynomials $\{P_k^{\alpha}\}_{\alpha = 0, ..., k}$ defined by formula (6.14) in Sudbery [8]. The basis of U_k obtained from these bases by means of Theorem 3 and applying the reflection γ is essentially the same given in Proposition 8 of Sudbery [8].

Another spanning set of the space $\mathcal{H}_{p,q}$ is given by the functions

$$g_k^{p,q}(z_1, z_2) = (z_1 + \alpha z_2)^p(z_2 - \alpha z_1)^q \quad (\alpha \in \mathbb{C})$$

(cf. Rudin [7], §12.5.1). Since $M(g_k^{p,q}) = \frac{-1}{p+1}g_k^{p+1,q-1,\alpha}$ for $\alpha \neq 0$ and $M(g_k^{p,q}) = -\frac{q}{p+1}z_2^{2-1}z_2^{p+1}$, where we set $g_k^{p,q} \equiv 0$ if $p < 0$, from Theorem 3 we get that U_k° is spanned over \mathbb{H} by the polynomials

$$R(g_k^{p,q}) = \begin{cases} g_k^{p,q} + \frac{(-1)^p q}{p+1} z_1^{p-1}z_2^{q-1,\alpha} \quad &\text{for } \alpha \neq 0 \\ \frac{-q}{p+1}z_1^{p-1}z_2^{q-1,\alpha} \quad &\text{for } \alpha = 0 \end{cases} \quad (\alpha \in \mathbb{C}, p + q = k)$$
Any choice of $k + 1$ distinct numbers $\alpha_0, \alpha_1, \ldots, \alpha_k$ gives rise to a basis of U_k^ψ.

The results obtained in this paper enabled the writing of a Mathematica package [6], named RegularHarmonics, which implements efficient computations with regular and ψ-regular functions and with harmonic and holomorphic functions of two complex variables.

\section*{References}
\begin{thebibliography}{9}
\bibitem{6} A. Perotti, RegularHarmonics - a package for Mathematica 4.2 for computations with regular quaternionic functions (available at http://www.science.unitn.it/~perotti/regular harmonics.htm).
\bibitem{7} W. Rudin, Function theory in the unit ball of \mathbb{C}^n, Springer-Verlag, New York, Heidelberg, Berlin (1980).
\end{thebibliography}

Department of Mathematics, University of Trento, Via Sommarive, 14, I-38050 Povo Trento ITALY
\textit{E-mail address: perotti@science.unitn.it}