Non-crystalline materials

FIAT

LÜX

Alastair N. Cormac

The Kazuo Inamori School of Engineering The New York State College of Ceramics Alfred University

What Is A Glass?

- Derived from *glaesum*, a Latin term for a lustrous and transparent material
- An inorganic product of fusion which has been cooled to a rigid condition without crystallizing (ASTM definition)
 - sol-gel ?
 - chemical vapour deposition?
- A solid with liquid like structure: noncrystalline; amorphous

what is a glass (continued)?

- structurally
 - non-crystalline: no long range order

Representations of SiO₂, quartz, showing translational symmetry

Snapshot of model structure for vitreous silica

what is a glass?

- structurally
 - non-crystalline: no long range order
- thermodynamically
 - a material supercooled through its melting point (exemplified through a volume-temperature plot)
 - metastable with respect to crystalline phases
- Glasses are isotropic in their physical properties

glass thermodynamics

- T_g, glass transition/transformation temperature
 - defines the onset of the solid state
 - is a function of cooling rate (thermal history)
 - is actually a range of temperatures
 - is the temperature below which most structural relaxation (effectively) ceases

Glass chemistry

- The historical development of glass chemistry is centered around vitreous silica
- "Additives" include Al, Na, Li, K, Ca
 - Changes to properties and structure
- Other oxide glass compositions centered around B_2O_3 and P_2O_5 and combinations with SiO_2
- Non-oxide glasses include fluorides, chalcogenides, and metallic glasses

Typical silica based glass compositions

	Vitreous	Plate	Window	Bottle	Pyrex	Glass	E
	silica					halogen	glass
						lamp	
SiO ₂	100.0	72.7	72.0	74.0	81.0	60.0	52.9
Al_2O_3		0.5	0.6	1.0	2.0	14.3	14.5
B_2O_3							9.2
CaO		13.0	10.0	5.4		6.5	17.4
MgO			2.5	3.7			4.4
Na ₂ O		13.2	14.2	15.3	4.5	0.01	
K ₂ O				0.6		Tr	1.0

basic concepts

- starting point is a (3-D) random network
- network nodes are coordination polyhedra
 - tetrahedron: e.g.SiO₄; BO₄
 - triangle: BO₃
- network is constructed by linking polyhedra together; oxygens at the vertices are shared between polyhedra
 - These are Bridging Oxygens

Zachariasen's Rules

- each oxygen should be linked to not more than two cations
- coordination number of oxygens around the central cation should be small, 4 or less
- oxygen polyhedra should share corners, not edges or faces
- at least three corners of the polyhedron should be shared, i.e. linked, to form a 3-D network
- Network is disordered
 - Distribution of ring sizes

Tetrahedral rings in crystalline network structures

6-ring in cristobalite

6- and 8-rings in quartz

Crystalline networks have discrete ring sizes

Zachariasen's random network structure

Glass structure length scales

- Consider three ranges of structure
- Range I concerns structure/geometry of coordination tetrahedron
- Range II is related to relative orientation of two connected tetrahedra
- Range III describes the medium range ring sizes, etc.

Zachariasen's random network structure

silica

- the building block is a tetrahedron
- randomness is due to variable Si O Si bond angles (and torsion angles)
- all the vertices are shared between tetrahedra
 - all oxygens are bridging oxygens
 - all network nodes are Q₄

Si - O - Si bond angle distribution is discrete in crystals, but not in glasses

Tetrahedral network structure of 45S5 bio-active glass

How is the structure measured?

- Scattering from non-crystalline materials produces
 1-D information
- Distribution functions convey 1-D structural information
 - Probability of finding an atom at a distance from a given atom
- Extract structure factor, S(Q), and T(r) from scattering of X-rays and neutrons
- For multi-component solids, total T(r) is sum of pair distribution functions

"Amorphous hump" seen in powder diffraction from non-crystalline material

2θ

radial distribution functions

Rdfs measure the density of atoms (either all or specific types) as a function of distance from an atom

Crystals: interatomic separation distribution is discrete

Non-crystalline systems: distribution of interatomic separations is continuous, except for nearest neighbours

radial distribution functions

Rdfs measure the density of atoms (either all or specific types) as a function of distance from an atom

Snap-shot structure of a lithium sodium silicate glass

Multi-component glasses

- There is a radial distribution function for each pair of atom types
- In the Li-Na-silicate glass there are
 - Li O, Na O, Si -O and O O pdfs
 - Li Li, Na Na & Li Na pdfs
 - Li Si, Na Si, and Si Si pdfs
- What is obtained from measurements will be the sum of all of these ...

Si - O and Si - F pair distribution functions in silica glass

F pair distribution functions in F doped 25mol% sodium silicate glass

How T(r) is obtained from a scattering experiment

T(r) comparison with experiment

Si - O pair radial distribution function as a function of temperature

Intra-tetrahedral bond angle in silica melts as function of temperature

Li-O and Na-O pdfs in single and mixed alkali (a) silicate and (b) aluminosilicate glasses

Deconvolution of First Peak of B-O PDF

addition of modifiers to silica

- Non-bridging oxygens are created
 - Association between NBO and modifier
 - Local charge neutrality
- "polymerised" 3-D network is disrupted
 - Larger rings are created
- What is distribution of modifiers in structure?
- Additional pair distribution function contribute to T(r)

Addition of alkali breaks up the network forming non-bridging oxygens

+

Na

Na

NBO

ring size distribution

- a ring is a closed path round tetrahedral sites in the network
- crystals have discrete ring sizes, whereas the disordered nature of the glass structure leads to a distribution of ring sizes
- addition of alkali causes larger rings to form
- can be used to characterise the network structure

Effect of addition of modifiers to Zachariasen's model

Tetrahedral ring size distribution in sodium silicate glasses

- Large size rings are most likely associated with Na-rich regions
- Na is coordinated with around five oxygen
- Na in α-Na₂Si₂O₅ is in
 5-fold coordination
 - Si
 BO
 NBO

A 12-ring in $Na_2O-2SiO_2$ glass

Summary

- Non-crystalline materials do not diffract
 - Lack of translational periodicity
- Scattering experiments provide 1-D information
 - Isotropic nature of glass structure
 - Need to obtain structure factor, S(Q)
- Usually use real space function, T(r), for comparison with simulations
- Note that T(r) resolution limited by Q_{max}
 Broadens peaks
- Simulations are almost essential in interpreting experimental data, especially from multi-component systems