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Classical v. QuantumClassical v. Quantum

 Classical
– Based on Born Model

» Electrostatic (point charges) & short-range potentials
» Representation of inter-atomic forces

– Can handle tens of thousands of atoms

 Quantum mechanical
– Solutions to Schrodinger wave equation

» Electronic property calculations

– Limited to 102 atoms
» Computationally expensive



Static v. dynamicStatic v. dynamic

 Static
– Structure and physical properties
– Point defect modelling
– No explicit temperature handling
– Not well suited to non-crystalline materials

 Dynamic
– Based on solutions to laws of motion
– Includes temperature (nominally)
– Useful for non-crystalline materials



The Born ModelThe Born Model

Ions treated as point charges
–Coulomb potential is long range
–Magnitude as model parameter

Short range potentials
–Pauli repulsion
–Dispersion forces

Polarisability



Structure + Potential =Structure + Potential =
ThermodynamicsThermodynamics
 Energy minimisation

– Perfect lattice properties
– Point defect energies and structure

 Glasses pose a problem because of non-
crystalline structure
– Hence appeal to computational methods -

molecular dynamics (or Monte Carlo)



The Born ModelThe Born Model

 Lattice energy:

 Forces obtained from derivatives of
Elattice

 Equilibrium from zero net forces
– Second derivatives of  Elattice

 Elastic, dielectric constants are second
derivative properties
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PolarisabilityPolarisability: The Shell: The Shell
ModelModel
 Simple mechanical model
 Ion charge partitioned between core

and (mass-less) shell
 Electronic polarisability,
α = Y2/kc,s+R

Other models:
– Breathing shell
– Point polarisable ion

Transferability issues



Short range potentialsShort range potentials

Effective potentials:

–Usually parametrised
–Fit to known physical properties or to

quantum mechanically calculated
energy surface
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AssumptionsAssumptions

Transferability of potentials
–Between polymorphs
–Between compounds, e.g.

oxygen…oxygen interaction

Oxygen ion polarisability
Restriction to pair potentials,

and/or three body terms



Energy Energy minimisationminimisation

 Structure refinement/prediction
Calculation of physical properties
Thermochemistry
Zero Kelvin technique

– Can include temperature behaviour through
use of phonon calculations (e.g. Helmholtz
energy)

 Supercell approach to defects



StructureStructure
Refinement/PredictionRefinement/Prediction

Refinement
–Equilibration of an ideal model

Prediction
–Ab initio generation of crystal

structure parameters
–Exercise in global optimisation



Potential Model for MgFPotential Model for MgF22

Crystal Properties Potential

Experimental Calculated Parameters

C11 13.99 13.59 A Mg-F 682.59

C12 8.93 9.59 R Mg-F 0.29797

C22 6.37 6.19 CMg-F 0.00

C33 20.42 23.19

C44 5.70 5.25 AF-F 1127.7

C66 9.54 9.63 RF-F 0.2763

!0 " 5.5 5.6 CF-F 15.8

!0  || 4.8 4.6
!# " 1.9 1.9 YMg 2.0

!# || 1.9 1.9 KMg

YF -1.23357

Elattice -60.74 -59.08 kF 17.496



Energy minimised structure of VO2(B) 

Ideal structure of VO2(B)



Crystal structure of BAM: Eu phosphor
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Comparison between calculatedComparison between calculated
and experimental structuresand experimental structures

Atom type Xobs. Xcalc. !X Zobs. Zcalc. !Z

Ba 0.6678 0.6667 0.0011 0.2500 0.24662 0.00338

Al(1) 0.8343 0.8338 0.0005 0.10544 0.10268 0.00276

Al(2) 0.3333 0.3333 0 0.02400 0.01848 0.00552

Al(3) 0.3333 0.3333 0 0.17416 0.17052 0.00364

Al(4) 0.0000 0.0000 0 0.00000 0.00000 0

O(1) 0.1534 0.1488 0.0046 0.05152 0.05130 0.00022

O(2) 0.5042 0.5040 0.0002 0.14799 0.14333 0.00466

O(3) 0.6667 0.6667 0 0.05901 0.05409 0.00492

O(4) 0.0000 0.0000 0 0.14437 0.139590 0.00478

O(5) 0.3333 0.3333 0 0.25000 0.24789 0.00211



The oxygen layers in olivine rumple from ideal 
close packing to a lower energy configuration



Molecular DynamicsMolecular Dynamics

 What is it?
– Approach to the computer simulation of

materials

 What does it do?
– Calculates dynamic properties by solving,

iteratively,  (classical) equations of motion

 How does it work?
– Computational approach to statistical

mechanics



Statistical MechanicsStatistical Mechanics

 Conversion of atomic scale information into
macroscopic quantities

 Thermodynamic state defined by variables such
as P, T, N.

 Other thermodynamic properties, such as ρ, µ,
Cv etc., derived from equations of state
– Their values are dictated by variables characterizing

thermodynamic state

 atomic positions and momenta define
instantaneous mechanical state (phase space)



Statistical MechanicalStatistical Mechanical
EnsemblesEnsembles
 Microcanonical: constant N,V,E
 Canonical: constant N, V, T
 Grand Canonical: constant µ, V, T

 Standard MD simulations model the
microcanonical ensemble
– Newton’s laws conserve energy



 Verlet algorithm
– Direct solution of

– Velocities eliminated by adding Taylor
expansions

Integrating the equations ofIntegrating the equations of
motionmotion

r
i
(t + !t) = 2r

i
(t) " r

i
(t " !t) + !t

2
a
i
(t)

m
i

d
2
r
i

dt
2
= F

i

r
i
(t + !t) = r

i
(t) + !tv

i
(t) +

1

2
!t

2
a
i
(t)

r
i
(t " !t) = r

i
(t) " !tv

i
(t) +

1

2
!t

2
a
i
(t)



NVE NVE vv. NVT: Thermostats. NVT: Thermostats

 Equations of motion conserve energy

 For Temperature control, system is kept
in contact with a heat bath

 Thermostats work by scaling the
velocities so that the kinetic energy is
appropriate to the target temperature



 Nosé:

 Hoover:

– with kinetic energy controlled by

 Berendsen:
– scale velocities by

v
i
= sdr

i
dt

v
i
= dr

i
dt = p

i
m

with dp
i

dt = !"# !$p
i

Q

2

d!

dt
= pi

2
2mi " g 2kB

i

# T

! = 1+
"t
#
T

T

T
$1%

&'
(
)*

%

&'
(

)*

1
2



Calculation of ForcesCalculation of Forces

 MD technique hinges on accurate forces
 Forces are obtained from an inter-atomic

potential model
 Classical models based on Born model of

solid
– Point ions with short-range (Pauli) repulsive

forces
– Can include polarisability via  the Shell

Model

 Models need validation: check on
parameters



Computational considerationsComputational considerations

 Size of simulation box
– Periodic boundary conditions used to generate infinite

solid

– Ewald summation of Coulombic interactions

 Length of simulation
– CPU time per time-step

– Number of time-steps

 Accumulation of data
– Post-run analysis



Post-run analysisPost-run analysis

 Structure
– Radial distribution functions

– Co-ordination numbers

– Spatial distribution of different atomic
species

 Transport
– Diffusion co-efficients

– Migration mechanisms



Snap-shot structure of a lithium sodium silicate glass
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Na-O pdf for 30Na2O•70SiO2 glass deconvoluted into bridging and non-
bridging oxygen components.  Note the shorter Na-NBO distances. The lines
represent crystalline Na-O distances.



Segregation of Li and NBO in a silicate glass
containing 5mol%lithia.



Local Cation EnvironmentsLocal Cation Environments

 Network formers: tetrahedra
 Network modifiers
– Nature of polyhedron depends on cation size

 How are modifier polyhedra linked
together?
– Share corners and edges, sometimes faces
– Underlying feature of the Modified Random

Network Model

 Connectivity of modifier polyhedra play
key role in diffusion processes



25Na2O-75SiO2
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Corner Sharing Edge Sharing

Connectivity of Na-O polyhedra from a 25Na2O.75SiO2 glass



Connectivity of Na-O polyhedra from a 25Na2O.75SiO2 glass

In this group, one polyhedron shares edges with two other polyhedra.
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Monte Carlo methodsMonte Carlo methods

 Statistical mechanical approach
An atom is moved: the move is

accepted, if
– new configuration has lower energy, or
– increase in energy is less than a randomly

generated ΔE.

Reverse Monte Carlo
– Moves are intended to improve fit to

experimental data



Defect CalculationsDefect Calculations

Point defects
–Vacancies, interstitials, substitutional

ions
–Dopants or impurities; trace elements

Structure and energetics
–Formation energy
–Migration activation energy
–Association energy



Defect calculationsDefect calculations

Defects remove translational symmetry
Use embedded regions or supercell

methods
– Atomistic region enclosed by dielectric

continuum

Mott-Littleton approximation
– Polarisation due to defect (relaxation)

Computer codes: HADES, CASCADE, GULP



SummarySummary

 Atomistic simulations provide an
important complement to experimental
structural studies

 Quantum mechanical methods becoming
more widely used
– Restricted to small systems

 Classical methods can be used for “ab
initio” determination of complex
structures, including non-crystalline
materials



Schematic of glass formation:Schematic of glass formation:
melting a polycrystalline mixturemelting a polycrystalline mixture


