Outline

- Introduction
- Classical methods: the Born Model
- Static lattice methods
 - energy minimisation
- Molecular dynamics
- Monte Carlo methods
Atomistic Simulations

- Classical or quantum?
- Static or dynamic?
- Availability of computer resources
Atomistic Simulations

- Classical or quantum?
- Static or dynamic?
- Availability of computer resources
Classical v. Quantum

- **Classical**
 - Based on Born Model
 - Electrostatic (point charges) & short-range potentials
 - Representation of inter-atomic forces
 - Can handle tens of thousands of atoms

- **Quantum mechanical**
 - Solutions to Schrödinger wave equation
 - Electronic property calculations
 - Limited to 10^2 atoms
 - Computationally expensive
Static v. dynamic

- **Static**
 - Structure and physical properties
 - Point defect modelling
 - No explicit temperature handling
 - Not well suited to non-crystalline materials

- **Dynamic**
 - Based on solutions to laws of motion
 - Includes temperature (nominally)
 - Useful for non-crystalline materials
The Born Model

- Ions treated as point charges
 - Coulomb potential is long range
 - Magnitude as model parameter
- Short range potentials
 - Pauli repulsion
 - Dispersion forces
- Polarisability
Structure + Potential = Thermodynamics

- Energy minimisation
 - Perfect lattice properties
 - Point defect energies and structure
- Glasses pose a problem because of non-crystalline structure
 - Hence appeal to computational methods - molecular dynamics (or Monte Carlo)
The Born Model

- Lattice energy:
 \[E_{lattice} = \frac{1}{2} \sum_{i,j} \frac{q_i q_j}{r_{ij}} + V(r_{ij}) + U(r_{ij}, r_{ik}) \]

- Forces obtained from derivatives of \(E_{lattice} \)

- Equilibrium from zero net forces
 - Second derivatives of \(E_{lattice} \)

- Elastic, dielectric constants are second derivative properties
Polarisability: The Shell Model

- Simple mechanical model
- Ion charge partitioned between core and (mass-less) shell
- Electronic polarisability, $\alpha = \frac{Y^2}{k_{c,s}} + R$
- Other models:
 - Breathing shell
 - Point polarisable ion
- Transferability issues
Short range potentials

Effective potentials:

\[V(r_{ij}) = A_{ij} \exp\left(-\frac{r_{ij}}{\rho_{ij}}\right) - C_{ij} \frac{1}{r_{ij}^6} \]

\[U(r_{ij}, r_{ik}) = \frac{1}{2} k_{ijk} (\theta - \theta_0)^2 \]

- Usually parametrised
- Fit to known physical properties or to quantum mechanically calculated energy surface
Assumptions

- Transferability of potentials
 - Between polymorphs
 - Between compounds, e.g. oxygen...oxygen interaction
- Oxygen ion polarisability
- Restriction to pair potentials, and/or three body terms
Energy minimisation

- Structure refinement/prediction
- Calculation of physical properties
- Thermochemistry
- Zero Kelvin technique
 - Can include temperature behaviour through use of phonon calculations (e.g. Helmholtz energy)
- Supercell approach to defects
Structure Refinement/Prediction

- **Refinement**
 - Equilibration of an ideal model

- **Prediction**
 - *Ab initio* generation of crystal structure parameters
 - Exercise in global optimisation
Potential Model for MgF$_2$

Crystal Properties

<table>
<thead>
<tr>
<th></th>
<th>Experimental</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{11}</td>
<td>13.99</td>
<td>13.59</td>
</tr>
<tr>
<td>C_{12}</td>
<td>8.93</td>
<td>9.59</td>
</tr>
<tr>
<td>C_{22}</td>
<td>6.37</td>
<td>6.19</td>
</tr>
<tr>
<td>C_{33}</td>
<td>20.42</td>
<td>23.19</td>
</tr>
<tr>
<td>C_{44}</td>
<td>5.70</td>
<td>5.25</td>
</tr>
<tr>
<td>C_{66}</td>
<td>9.54</td>
<td>9.63</td>
</tr>
<tr>
<td>$\varepsilon_0 \perp$</td>
<td>5.5</td>
<td>5.6</td>
</tr>
<tr>
<td>$\varepsilon_0 \parallel$</td>
<td>4.8</td>
<td>4.6</td>
</tr>
<tr>
<td>$\varepsilon_\infty \perp$</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>$\varepsilon_\infty \parallel$</td>
<td>1.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Potential Parameters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{\text{Mg-F}}$</td>
<td>682.59</td>
</tr>
<tr>
<td>$R_{\text{Mg-F}}$</td>
<td>0.29797</td>
</tr>
<tr>
<td>$C_{\text{Mg-F}}$</td>
<td>0.00</td>
</tr>
<tr>
<td>$A_{\text{F-F}}$</td>
<td>1127.7</td>
</tr>
<tr>
<td>$R_{\text{F-F}}$</td>
<td>0.2763</td>
</tr>
<tr>
<td>$C_{\text{F-F}}$</td>
<td>15.8</td>
</tr>
<tr>
<td>Y_{Mg}</td>
<td>2.0</td>
</tr>
<tr>
<td>K_{Mg}</td>
<td></td>
</tr>
<tr>
<td>Y_{F}</td>
<td>1.23357</td>
</tr>
<tr>
<td>k_F</td>
<td>17.496</td>
</tr>
</tbody>
</table>

E$_{\text{lattice}}$ -60.74 -59.08
Ideal structure of $\text{VO}_2(\text{B})$

Energy minimised structure of $\text{VO}_2(\text{B})$
Crystal structure of BAM: Eu phosphor

Spinel block

Barium site

Al(2) - Possible Mg sites

Al(1)

Al(4)

Al(3)
Comparison between calculated and experimental structures

<table>
<thead>
<tr>
<th>Atom type</th>
<th>$X_{\text{obs.}}$</th>
<th>$X_{\text{calc.}}$</th>
<th>ΔX</th>
<th>$Z_{\text{obs.}}$</th>
<th>$Z_{\text{calc.}}$</th>
<th>ΔZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>0.6678</td>
<td>0.6667</td>
<td>0.0011</td>
<td>0.2500</td>
<td>0.24662</td>
<td>0.00338</td>
</tr>
<tr>
<td>Al(1)</td>
<td>0.8343</td>
<td>0.8338</td>
<td>0.0005</td>
<td>0.10544</td>
<td>0.10268</td>
<td>0.00276</td>
</tr>
<tr>
<td>Al(2)</td>
<td>0.3333</td>
<td>0.3333</td>
<td>0</td>
<td>0.02400</td>
<td>0.01848</td>
<td>0.00552</td>
</tr>
<tr>
<td>Al(3)</td>
<td>0.3333</td>
<td>0.3333</td>
<td>0</td>
<td>0.17416</td>
<td>0.17052</td>
<td>0.00364</td>
</tr>
<tr>
<td>Al(4)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.1534</td>
<td>0.1488</td>
<td>0.0046</td>
<td>0.05152</td>
<td>0.05130</td>
<td>0.00022</td>
</tr>
<tr>
<td>O(2)</td>
<td>0.5042</td>
<td>0.5040</td>
<td>0.0002</td>
<td>0.14799</td>
<td>0.14333</td>
<td>0.00466</td>
</tr>
<tr>
<td>O(3)</td>
<td>0.6667</td>
<td>0.6667</td>
<td>0</td>
<td>0.05901</td>
<td>0.05409</td>
<td>0.00492</td>
</tr>
<tr>
<td>O(4)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0</td>
<td>0.14437</td>
<td>0.139590</td>
<td>0.00478</td>
</tr>
<tr>
<td>O(5)</td>
<td>0.3333</td>
<td>0.3333</td>
<td>0</td>
<td>0.25000</td>
<td>0.24789</td>
<td>0.00211</td>
</tr>
</tbody>
</table>
The oxygen layers in olivine rumple from ideal close packing to a lower energy configuration.
Molecular Dynamics

- **What is it?**
 - Approach to the computer simulation of materials

- **What does it do?**
 - Calculates dynamic properties by solving, iteratively, (classical) equations of motion

- **How does it work?**
 - Computational approach to statistical mechanics
Statistical Mechanics

- Conversion of atomic scale information into macroscopic quantities
- Thermodynamic state defined by variables such as P, T, N.
- Other thermodynamic properties, such as ρ, μ, C_v etc., derived from equations of state. Their values are dictated by variables characterizing thermodynamic state
- Atomic positions and momenta define instantaneous mechanical state (phase space)
Statistical Mechanical Ensembles

- Microcanonical: constant N, V, E
- Canonical: constant N, V, T
- Grand Canonical: constant μ, V, T

- Standard MD simulations model the microcanonical ensemble
 - Newton’s laws conserve energy
Integrating the equations of motion

- Verlet algorithm
 - Direct solution of
 \[m_i \frac{d^2 r_i}{dt^2} = F_i \]
 - Velocities eliminated by adding Taylor expansions
 \[r_i(t + \Delta t) = 2r_i(t) - r_i(t - \Delta t) + \Delta t^2 a_i(t) \]
 \[r_i(t - \Delta t) = r_i(t) - \Delta t v_i(t) + \frac{1}{2} \Delta t^2 a_i(t) \]
NVE \textit{v.} NVT: Thermostats

- Equations of motion conserve energy
- For Temperature control, system is kept in contact with a heat bath
- Thermostats work by scaling the velocities so that the kinetic energy is appropriate to the target temperature
• **Nosé:** \(\mathbf{v}_i = s \mathbf{dr}_i / dt \)

• **Hoover:** \(\mathbf{v}_i = \mathbf{dr}_i / dt = \mathbf{p}_i / m \)

 with \(\frac{d\mathbf{p}_i}{dt} = -\nabla \Phi - \zeta \mathbf{p}_i \)

 - with kinetic energy controlled by

\[
\frac{Q}{2} \frac{d\zeta}{dt} = \sum_i \frac{\mathbf{p}_i^2}{2m_i} - g/2k_B T
\]

• **Berendsen:**

 - scale velocities by \(\chi = \left(1 + \frac{\Delta t}{\tau_T} \left(\frac{T}{T_i} - 1 \right) \right)^{1/2} \)
Calculation of Forces

• MD technique hinges on accurate forces
• Forces are obtained from an inter-atomic potential model
• Classical models based on Born model of solid
 - Point ions with short-range (Pauli) repulsive forces
 - Can include polarisability via the Shell Model
• Models need validation: check on parameters
Computational considerations

- Size of simulation box
 - Periodic boundary conditions used to generate infinite solid
 - Ewald summation of Coulombic interactions

- Length of simulation
 - CPU time per time-step
 - Number of time-steps

- Accumulation of data
 - Post-run analysis
Post-run analysis

- **Structure**
 - Radial distribution functions
 - Co-ordination numbers
 - Spatial distribution of different atomic species

- **Transport**
 - Diffusion co-efficients
 - Migration mechanisms
Snap-shot structure of a lithium sodium silicate glass

Li
Na
Si
O
\(\text{SiO}_2 \text{ glass} \)

\[Q_{\max} = 45.2 \text{ Å}^{-1} \]

\[R_x = 5.2\% \]

- SM1
- exp
- SM1-exp
Na-O pdf for 30Na$_2$O•70SiO$_2$ glass deconvoluted into bridging and non-bridging oxygen components. Note the shorter Na-NBO distances. The lines represent crystalline Na-O distances.
Segregation of Li and NBO in a silicate glass containing 5mol% lithia.
Local Cation Environments

- Network formers: tetrahedra
- Network modifiers
 - Nature of polyhedron depends on cation size
- How are modifier polyhedra linked together?
 - Share corners and edges, sometimes faces
 - Underlying feature of the Modified Random Network Model
- Connectivity of modifier polyhedra play key role in diffusion processes
25Na₂O·0.75SiO₂: Si - O pair distribution function
Na - O pair distribution function

25Na₂O-75SiO₂

Radius (Angstrom)

Accumulated Coord. Number

T(r)

NaO
NaBO
NaNBO
Connectivity of Na-O polyhedra from a $25\text{Na}_2\text{O}.75\text{SiO}_2$ glass
Connectivity of Na-O polyhedra from a 25Na\textsubscript{2}O.75SiO\textsubscript{2} glass

In this group, one polyhedron shares edges with two other polyhedra.
Na - O pdf in 1mol% sodium silicate

Majority of co-ordinating oxygen ions are BO
Superposition of trajectories from stoichiometric (Na: green) and non-stoichiometric (Na: blue) Na β-aluminas. The red atoms are oxygens. The Na associated with the O6 do not take part in diffusion.
Monte Carlo methods

- Statistical mechanical approach
- An atom is moved: the move is accepted, if
 - new configuration has lower energy, or
 - increase in energy is less than a randomly generated ΔE.

- Reverse Monte Carlo
 - Moves are intended to improve fit to experimental data
Defect Calculations

- Point defects
 - Vacancies, interstitials, substitutional ions
 - Dopants or impurities; trace elements

- Structure and energetics
 - Formation energy
 - Migration activation energy
 - Association energy
Defect calculations

- Defects remove translational symmetry
- Use embedded regions or supercell methods
 - Atomistic region enclosed by dielectric continuum
- Mott-Littleton approximation
 - Polarisation due to defect (relaxation)
- Computer codes: HADES, CASCADE, GULP
Summary

- Atomistic simulations provide an important complement to experimental structural studies
- Quantum mechanical methods becoming more widely used
 - Restricted to small systems
- Classical methods can be used for “ab initio” determination of complex structures, including non-crystalline materials
Schematic of glass formation: melting a polycrystalline mixture