EXAFS data analysis

Extraction of EXAFS signal

Experimental EXAFS spectrum

Data analysis - Absorption coefficient

Data analysis - The EXAFS signal

Two distances seen by EXAFS

The phase's effect

The back-scattering function

Rolly Grisenti University of Trento (Italy)

Their effect on EXAFS signal

Rolly Grisenti University of Trento (Italy)

The Debye-Waller damping effect

Rolly Grisenti University of Trento (Italy)

The m.f.p. damping effect

Rolly Grisenti University of Trento (Italy)

Weighting the EXAFS signal

EXAFS signals: examples

Quantitative analysis

Rolly Grisenti University of Trento (Italy)

Input for each path:

- backscattering amplitude
- phaseshifts
- inelastic terms

Different analysis procedures

EXAFS data analysis

▲ Fourier transform

Data analysis - Fourier Transform k \rightarrow r

Fourier Transform and distribution

26 - Iron: bcc structure

29 - Copper: fcc structure

32 - Germanium: diamond structure

i	Ni		R _i (Å)
1	4	a(√3)/4	2.45
2	12	a/√2	4.00
3	12	a(√11)/4	4.69
4	6	а	5.66
5	12	a(√19)/4	6.16
6	24	a(√6)/2	6.93

Rolly Grisenti University of Trento (Italy)

a = 5.66 Å

32-Ge: crystalline and amorphous

EXAFS data analysis

Fourier back-transform

Data analysis - Fourier Back-transform $r \rightarrow k$

The cumulants

The cumulants

Rolly Grisenti University of Trento (Italy)

Degrees of disorder

$$\chi(k) = N \left| f(k,\pi) \right| \frac{S_0^2 e^{-2C_1/\lambda}}{k C_1^2} \exp\left(2k^2 C_2\right) \exp\left(\frac{2}{3}k^4 C_4 + \dots\right) \sin\left[2k C_1 - \frac{4}{3}k^3 C_3 + \dots + \phi(k)\right]$$

EXAFS for one shell

Data analysis - Independent parameters

EXAFS data analysis

Phase and amplitude analysis

Phase and amplitude

Direct Fourier transform

Inverse Fourier transform

Real and imaginary part

$$\hat{\chi}(k) = -\frac{\hat{A}(k)}{2i} \exp\left[-i\hat{\Phi}(k)\right]$$

$$= \frac{1}{2} \hat{A}(k) \left[\sin \hat{\Phi}(k) + i \cos \hat{\Phi}(k)\right]$$
Real Imaginary
$$\mathbf{k}$$

Complex filtered signal

Calculation of phase and amplitude

Rolly Grisenti University of Trento (Italy)

Amplitude

$$\hat{A}(k) = 2\sqrt{\left[\operatorname{Re}\hat{\chi}(k)\right]^2 + \left[\operatorname{Im}\hat{\chi}(k)\right]^2}$$

Total phase

$$\hat{\Phi}(k) = \tan^{-1} \left[\frac{\operatorname{Re} \hat{\chi}(k)}{\operatorname{Im} \hat{\chi}(k)} \right]$$

$$A(k) = \frac{S_0^2 e^{-2C_1/\lambda}}{C_1^2} \left[f(k,\pi) \right] N \exp\left[-2k^2 C_2 + \frac{2}{4}k^4 C_4 + \ldots \right] \qquad \Phi(k) = 2kC_1 - \frac{4}{3}k^3 C_3 + \ldots + \phi(k)$$

32

"Ratio method" - phases

If suitable model compound available ...

$$\Phi^{s} - \Phi^{m} = 2k(C_{1}^{s} - C_{1}^{m}) - \frac{4}{3}k^{3}(C_{3}^{s} - C_{3}^{m})$$
$$\frac{\Phi^{s} - \Phi^{m}}{2k} = (C_{1}^{s} - C_{1}^{m}) - \frac{4}{3}k^{2}(C_{3}^{s} - C_{3}^{m})$$

$$\frac{\Phi^{s} - \Phi^{m}}{2k} \left\{ \begin{array}{c} \Delta C_{3} = 0 \\ k^{2} \end{array} \right\}$$

"Ratio method" - amplitudes

"Ratio method" - results

Ratio of coordination numbers

$$C_0^s - C_0^m = -2 \frac{C_1^s - C_1^m}{\lambda} - 2 \left[\ln C_1^s - \ln C_1^m \right]$$

Relative values of cumulants

"Ratio method" - OK when ...

Rolly Grisenti University of Trento (Italy)

- Only Single Scattering
- Only one distance

$$\chi(k) = A(k)\sin\Phi(k)$$

- Suitable reference model available
 - First coordination shell, one distance
 - Same sample-model chemical environment T or p-dep. Studies Amorphous .vs. crystalline samples

- 1st shell, different sample-model chemical environment
- Separated outer shells, weak M.S.

- 1st shell in bcc structure (2 distances)
- Superposed outer shells
- M.S. contributions

Depending on sought accuracy

Copper 1st shell - ratio method

EXAFS data analysis

Fitting with a theoretical model

The FeO example

EXAFS Analysis: Modeling the 1st Shell of FeO

FeO has a rock-salt structure.

To model the FeO EXAFS, we calculate the scattering amplitude f(k) and phase-shift $\delta(k)$, based on a guess of the structure, with Fe-O distance R = 2.14 Å (a regular octahedral coordination).

We'll use these functions to *refine* the values \mathbf{R} , \mathbf{N} , σ^2 , and \mathbf{E}_0 so our model EXAFS function matches our data.

Fit results:

N
 = 5.8
$$\pm$$
 1.8

 R
 = 2.10 \pm 0.02Å

 ΔE_0
 = -3.1 \pm 2.5 eV

 σ^2
 = 0.015 \pm 0.005 Å².

 $|\chi(R)|$ for FeO (blue), and a 1 st shell fit (red).

The first shell

EXAFS Analysis: 1st Shell of FeO

1^{st} shell fit in k space.

The 1^{st} shell fit to FeO in k space.

There is clearly another component in the XAFS!

$1^{\rm st}$ shell fit in R space.

 $|\chi(\mathbf{R})|$ and $\operatorname{Re}[\chi(\mathbf{R})]$ for FeO (blue), and a 1st shell fit (red).

Though the fit to the magnitude didn't look great, the fit to $\operatorname{Re}[\chi(R)]$ looks very good.

EXAFS Analysis: Second Shell of FeO

To adding the second shell Fe to the model, we use calculation for f(k) and $\delta(k)$ based on a guess of the Fe-Fe distance, and refine the values \mathbf{R} , \mathbf{N} , σ^2 . Such a fit gives a result like this:

 $|\chi(\mathbf{R})|$ data for FeO (blue), and fit of 1st and 2nd shells (red).

The results are fairly consistent with the known values for crystalline FeO: 6 O at 2.13Å, 12 Fe at 3.02Å.

Fit results (uncertainties in parentheses):

Shell	Ν	${f R}$ (A)	σ^2 (Ų)	ΔE_0 (eV)
Fe-O	6.0(1.0)	2.10(.02)	0.015(.003)	-2.1(0.8)
Fe-Fe	11.7(1.3)	3.05(.02)	0.014(.002)	-2.1(0.8)

EXAFS Analysis: Second Shell of FeO

Other views of the data and two-shell fit:

The Fe-Fe EXAFS extends to higher-k than the Fe-O EXAFS.

Even in this simple system, there is some overlap of shells in R-space.

The agreement in $\text{Re}[\chi(R)]$ look especially good – this is how the fits are done.

Of course, the modeling can get more complicated than this!

A free program for EXAFS data analysis

Load data			×
file name:			Piela H
CGE002.DAT		.*.* H:\-\-\-GE_CU_AGEGA_LURE_96\DAT	- K
AGE001.DAT AGE002.DAT AGE003.DAT AGE004.DAT APCINF0.DAT	7267 10283 21605 943 7856	19.01.00 16.03 [] 19.01.00 16.03 [-a-] 19.01.00 16.03 [-c-] 19.01.00 16.03 [-d-] 19.01.00 16.03 [-d-] 19.01.00 16.03 [-f-]	
CGE001.DAT CGE002.DAT	7272 21610	19.01.00 16:03 [-g-] 17.07.96 15:10 [-h-]	ОК
CGE003.DAT CGE004.DAT CGE005.DAT	21610 21610 21610	17.07.36 17.42 17.07.96 19:24 17.07.96 21:03	Cancel
CGE006.DAT CGE007.DAT	21610 21610	19.01.00 16:03 19.01.00 16:03	Edit file
file format: LURE old		Formats	Help

Loading data

Reading raw data

Rolly Grisenti

University of Trento (Italy)

B.G subtraction and FT

Rolly Grisenti University of Trento (Italy)

Enlarged view of the edge region

Legend

Details about the FT

Isolation of the first shell

First shell BFT

Rolly Grisenti

University of Trento (Italy)

Amplitude and phase calculation

BFT details with calculated amplitude and phase

Athena: another (free) program for EXAFS

Athena	
ile Edit Group Plot Mark Data Align Merge Diff Analysis	Settings He
Project	Data groups (modified)
Current group CGE003.DAT File: NTALI/GE_CU_AGEGA_LURE_96/DAT/CGE003.DAT Z: Ge Edge: K Importance: 1	CGE003.DAT
Background removal E0: 11103 X E shift: 4.059 Rbkg: 1.0 X Standard: None Background: Autobk	Plot current group in E k R q kq Plot marked group in
Forward Fourier transform k-weight: 1 dk: 1 window type: kaiser-bessel	Plotting options E k R q Stack Ind PF Image: mu(E) Image
Backward Fourier transform dr: 0.2 window type: kaiser-bessel — R-range: 1.0 X to 3.0 X Plotting parameters	 pre-edge line post-edge line Normalized

BG removal

FT of the two samples

Back FT of the first shell

File Edit View Mode Window Options Help

Amplitude-Phase analysis

File Edit Group Plot Mark Data Align M	Merge Diff Analysis	Settings Help
File Edit Group Plot Mark Data Align N Log-Ratio/Phase-E Standard: 2: CGE Unknown: CGE003 Fourier transform and fitting parameters k-range of FT: 3 k-weight: 2 R-range of BFT: 1.0 2pi jump: 1 1/2 k-range of fit: 5	Analysis Difference Analysis 030.DAT ± • • • • • • • • • • • • • • • • <th>Settings Help Data groups (modified) CGE003.DAT CGE030.DAT</th>	Settings Help Data groups (modified) CGE003.DAT CGE030.DAT
Fit Results Zeroth: 1.06771 +/- 0.00863 First: 0.00918 +/- 0.00021 Second: 0.00185 +/- 0.00011	Plot current group in E k R q kq	
Plot log-ratio + fit	Plot phase-difference + fit	E k R q Plotting options
Save ratio data & fit	Write log file	E k R q Stack Ind PF
Plot standard and unknown in		● chi*k^kw
k F	p S	Chi C
Document section: log ratio	● chi*k ● ● chi*k ●	
Doing log ratio/phase difference fit dee	al	 chi*k^3 Window kmin: 0 kmax: 20

Amplitude analysis: $ln(N_s / N_m)$

Phase analysis : $\Phi_s - \Phi_m$

Thank you for your attention