Introduction to X-ray diffraction

1) Diffraction: the basic concepts

What it isWhen it occoursHow it is interpreted fenomenologically and matematically

2) The Fourier Transform

How it works The convolution function Examples of optical transforms

3) Elements of X-ray diffractions

Diffracton by electrons, atoms, molecules, crystals Laue equations, Bragg equation, Ewald description Rotating crystal method, Powder method The temperature effect

What's Diffraction?

Diffraction is the spreading of waves around obstacles.

18860

consequences of **diffraction** are that sharp shadows are not produced and interference patterns appear.

Diffraction takes place

1. Mechanical waves *water waves, sound;*

2. very small moving particles which show wavelike properties *electrons, neutrons, atoms,*

3. with electromagnetic radiation: *light, X-rays, gamma rays;*

How is it interpreted ?

The phenomenon is the result of interference *i.e.,* when waves are superimposed, they may reinforce or cancel each other out

and is most pronounced when the wavelength of the radiation is comparable to the linear dimensions of the obstacle.

How is diffraction described?

 $e^{i(\vec{k}\cdot\vec{r_1}-\omega t)}$ incoming wave interacting with the elementar volume dV

The perturbation of dV on the incoming wave is proportional to $f(\vec{r}_1)dV$ DIFFRACTED WAVE by dV = $f(\vec{r}_1)dV e^{i(\vec{k}\cdot\vec{r}_1-\omega t)}$

How is diffraction described ?

... Superimposition theorem

Diffraction pattern= $f(\mathbf{r}_1) e^{i (\mathbf{k} \cdot \mathbf{r}_1 - \omega t)} d\mathbf{r}_1 + f(\mathbf{r}_2) e^{i (\mathbf{k} \cdot \mathbf{r}_2 - \omega t)} d\mathbf{r}_2 + \dots$

 $F(\vec{k}) = \int_{V} f(\vec{r}) e^{i(\vec{k}\vec{r} - \omega t)} d\vec{r}$

The significance of the inverse transform

The principle of the reversibility light paths

$$F(\mathbf{k}) = \int_{\mathbf{k}} f(\mathbf{r}) \, e^{i \, \mathbf{k} \cdot \mathbf{r}} d\mathbf{r}$$

$$f(\mathbf{r}) = \int_{\mathbf{r}} F(\mathbf{k}) \, e^{-i \, \mathbf{k} \cdot \mathbf{r}} d\mathbf{k}$$

Diffraction in the back plane of a lens

Lens as back Fourier transform analog device

From real to reciprocal space and vice-versa

 $f(\mathbf{r})$ and $F(\mathbf{k})$ carry the same information expressed in terms of different variables

Mathematical Fourier-backtransform

...still no lenses for atomic X-rays "microscopy"

Fourier transforms

1) Diffraction: the basic concepts

What it isWhen it occoursHow it is interpreted matematically and fenomenologically

2) The Fourier Transform

How it works The convolution function Examples of optical transforms

Fourier Transforms

$$F(k) = \int_{-\infty}^{+\infty} f(x)e^{ikx} dx$$
 Fourier transform of $f(x)$

FT of one δ functions

FT of two δ functions

 $f(x) = \delta(x + x_0) + \delta(x - x_0)$

 $F(k)=2 \cos kx_0(x)$

$$F(k) = \int_{-\infty}^{+\infty} f(x)e^{ikx} dx = \int_{-\infty}^{+\infty} (\delta(x+x_0) + \delta(x-x_0))e^{ikx} dx =$$
$$= \int_{-\infty}^{+\infty} (\delta(x+x_0))e^{ikx} dx + \int_{-\infty}^{+\infty} (\delta(x-x_0))e^{ikx} dx$$
$$= \left[e^{-ikx_0} + e^{+ikx_0}\right] = 2 \cos kx_0$$

FT of N δ functions

FT of an infinite series of δ function

Summary

- The positions of the main peaks in a FT are determined by the spacing x_0 of the δ functions in the original array
- The higher is the number of the δ functions the narrower is the width of the main peak in the FT
- The number of the subsidiary peaks is determined by the total number of the δ functions in the original array

$$F(k) = h \int_{-X_0}^{X_0} e^{ikx} dx = h \left[\frac{e^{ikx}}{ik} \right]_{-X_0}^{X_0} = h \frac{e^{ikX_0} - e^{-ikX_0}}{ik} \quad \implies \sin \alpha = \frac{e^{i\alpha} - e^{-i\alpha}}{2i} \quad \alpha = kX_0$$

$$F(k) = 2hX_0 \frac{\sin kX_0}{kX_0} \qquad F(k) = Tf(x) \frac{-\pi}{x_0} \frac{\pi}{x_0} \frac{\pi}{x_0}$$

Holes on black paper

Reciprocal space

as a convolution

Convolution Integral

$$c(u) = \int_{x} f(x) g(u - x) dx$$

 $c(\mathbf{u})$ is the convolution integral of f(x) e g(x)

Convolution function

$T(f(x) * g(x)) = T(f(x)) \times T(g(x))$

Diffraction by two wide slits

Two slits diffraction

G. Harburn, C. A. Taylor T. R. Welberry "Optical Transforms" G. Bell& Sons Ltd

Diffraction by three wide slits

Hypothetical benzene molecular crystals

G. Harburn, C. A. Taylor T. R. Welberry "Optical Transforms" G. Bell& Sons Ltd

Traslation and Rotation

space.

TRANSLATION

ROTATION

TRANSLATION

Gas and powder patterns

ROTATION

Introduction to X-ray diffraction

1) Diffraction: the basic concepts

What it isWhen it occoursHow it is interpreted matematically and fenomenologically

2) The Fourier Transform

How it works The convolution function Examples of optical transforms

3) Elements of X-ray diffraction

Diffracton by electrons, atoms, molecules, crystals Laue equations, Bragg equation, Ewald description Rotating crystal method, Powder method, Laue method The temperature effect

Mathematical Fourier-backtransform

...still no lenses for atomic X-rays "microscopy"

Scattering amplitude of electrons

Sample = 1 electron

Sample = n electrons

Scattering from an atom

Sample = 1 atom

$$f_a(\vec{K}) = \int \rho(\vec{r}) e^{i\vec{K}\cdot\vec{r}} dV$$

Atomic form function

Diffraction from a molecule

Diatomic molecule

$$F_{HF}(\vec{K}) = f_F e^{i\vec{K}\cdot\vec{r}_F} + f_H e^{i\vec{K}\cdot\vec{r}_H} = f_F + f_H e^{i\vec{K}\cdot\vec{r}_H}$$

Orientational averaging

F

$$\vec{r}_{_{H}}$$
 = constant Spatial orientation = random

$$F_{HF}(\vec{K}) = f_F + f_H e^{i\vec{K}\cdot\vec{r}_H}$$

$$I(\vec{K}) = F_{HF}(\vec{K})F_{HF}^{*}(\vec{K}) =$$

= $f_{F}^{2} + f_{H}^{2} + f_{F}f_{H}e^{i\vec{K}\cdot\vec{r}_{H}} + f_{F}f_{H}e^{-i\vec{K}\cdot\vec{r}_{H}}$

The case of CF₄ molecules

Mo has the same number of electrons of the CF₄ molecule

Scattering factor of a crystal

 \mathbf{r}_{a} locates each atom of the crystal, \mathbf{R}_{l} locates a generic lattice point, \mathbf{r}_{ab} locates the position of each atom within the base

$$\mathbf{r}_{a} = \mathbf{R}_{1} + \mathbf{r}_{ab}$$
 $\mathbf{R}_{1} = l_{1}\mathbf{a} + l_{2}\mathbf{b} + l_{3}\mathbf{c}$

$$f_{CR} = \sum_{elettrons} e^{i\vec{K}\cdot\vec{r}_{1}} = \sum_{r_{a}} e^{i\vec{K}\cdot\vec{r}_{a}} = \sum_{R_{1}} e^{i\vec{K}\cdot\vec{k}_{a}} = \sum_{R_{1}} e^{i\vec{K}\cdot\vec{R}_{1}} \sum_{r_{ab}} e^{i\vec{K}\cdot\vec{r}_{ab}} = L\cdot F$$

$$f_{CR} = \sum_{R_{1}} e^{i\vec{K}\cdot\vec{R}_{1}} \sum_{r_{ab}} e^{i\vec{K}\cdot\vec{r}_{ab}} = L\cdot F$$

$$L = \sum_{R_{1}} e^{i\vec{K}\cdot\vec{R}_{1}} F = \sum_{r_{ab}} e^{i\vec{K}\cdot\vec{r}_{ab}}$$

The atomic structure factor

$$F = \sum_{r_{ab}} e^{i\vec{K}\vec{r}_{ab}} = \sum_{j} f_{j} e^{2\pi i (hx_{j} + ky_{j} + lz_{j})}$$

 x_i, y_i, z_i = fractional positions in the unit cell

F is independent on the shape and size of the unit cell.

Simple cubic structure (a-Polonium)

One atom per cell located at: $(x_j, y_j, z_j) = (0,0,0)$

$$F = f e^{2\pi i (h0 + k0 + l0)} = f$$

All the reflections are allowed

The structure factor (fcc)

Face-centered cubic (Cu structure)

4 atoms per cell located at: $(x_{j}, y_{j}, z_{j}) = (000), (_0), (0_), (_0]$

$$F = f \left[1 + f e^{\pi i (h+k)} + f e^{\pi i (h+1)} + f e^{\pi i (k+1)} \right]$$

h, *k*, *l* all even or all odd (unmixed) _ F=4 *f h*, *k*, *l* mixed _ F=0

Allowed reflections: the unmixed ones, i.e. (111), (200), (220), ...

Forbidden reflections: (100), (110), (311), (210),

Linear array of atoms

Diffraction by a plane array of atoms

Diffraction by a 3 dimensional lattice array of atoms

Constructive interference: Optical path difference = $n \lambda$, $n \in \mathbb{N}$

$$n\lambda = 2d_{hkl}\sin\theta$$

Every real lattice has its own reciprocal lattice

$$\vec{a}^* = 2\pi \frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \quad \vec{b}^* = 2\pi \frac{\vec{c} \times \vec{a}}{\vec{a} \cdot \vec{b} \times \vec{c}} \quad \vec{c}^* = 2\pi \frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{b} \times \vec{c}}$$

Reciprocal lattice construction and properties

Rotating crystal method

Diffraction of crystalline powders

Translations and Rotations of crystallites

Crystalline powder reciprocal lattice

Reciprocal lattice

The crystallites are randomly oriented as well as their reciprocal lattices which, however, share a common origin.

G. Dalba, Trento Univ.

The spheres are described by the points of the reciprocal lattices as if single crystallites rotate.

The reciprocal lattice of a crystalline powder is done by concentric spheres.

These spheres intersect the Ewald sphere in a set of circles. The diffracted beams generate a set of cones.

Diffraction Pattern of a fcc lattice

All the diffraction patterns relative to the crystalline planes containing atoms in the lattice points are present; i.e the planes 220 but not the 110.

Lattice parameter calculation

$a = d_{hkl} \sqrt{d}$	$h^2 + k^2$	$+ l^{2}$
------------------------	-------------	-----------

hkl	20	$d_{hkl} = \lambda / \sin \theta$	$a = d_{hkl}\sqrt{h^2 + k^2 + l^2}$
100	45.8 °	0.294	$a = d_{hkl} \sqrt{1 + 0 + 0} = 0.294 nm$
110	66.7 °	0.208	$a = d_{hkl}\sqrt{1 + 1 + 0} = 0.208\sqrt{2} = 0.295nm$
111	84.7 °		$a = d_{hkl} \sqrt{1 + 1 + 1} = 0.294 nm$
200	102°		$a = d_{hkl}\sqrt{2+0+0}$
210	120. 8°		$a = d_{hkl}\sqrt{2+1+0}$
211	144. 5°		$a = d_{hkl} \sqrt{2 + 1 + 1}$

Planes satisfying the Bragg condition

All reciprocal lattice points belonging to the greater sphere and not belonging to the smaller sphere satisfy the Bragg condition.

Laue immages

Temperature effect

The increase of temperature has 3 effects:

1 The unit cell expands \Longrightarrow The plane spacing d changes \Longrightarrow 2 θ positions change

2 The intensities of the diffraction lines decrease

3 The intensity of the background scattering between lines increases

Temperature effect

Hypotetivcal pattern

Temperature Factor

 \mathbf{u}_{K} is the component of the atomic displacement parallel to \mathbf{K}

The exponential term is called Debye Waller

- Sherwood
 - Introduction to X-ray diffraction
- Lypson
 - Optical diffraction
- G. Harburn, C. A. Taylor T. R. Welberry Optical Transforms" G. Bell& Sons Ltd, Plate 16
- C.A. Taylor
 - Atlas of optical transforms
- Cullity
 - X-ray diffraction