Diffraction from polycrystalline materials

Paolo Scardi

Department of Materials Engineering and Industrial Technologies Unive rsity of Trento

Paolo.Scardi@unitn.it

PART I

- From single-crystal to powder diffraction
- Intensity scattered from a powder sample
$\mathcal{P A R I} I I$
- Features and aberrations of the powder geometry
- Structure factor and intensity calculations

Diffraction and Reciprocallattice

\mathcal{A} vector drawn from the origin of the reciprocal lattice to the point ($\kappa \mathrm{KD}$), where \hbar, K lare the Miller indices (integer numbers) is given $6 y$:

$$
\underline{d}_{h k l}^{*}=h \underline{a}^{*}+k \underline{b}^{*}+l \underline{c}^{*}
$$

where $\underline{a}^{*}, \underline{\underline{b}}^{*}, \underline{\underline{c}}$ * are the reciprocal space vectors

The vector modulus is the inverse of the interplanar distance for the planes with indices ($\kappa \kappa \mathrm{K}$):

$$
d_{h k l}^{*}=\left|\underline{d}_{h k l}^{*}\right|=\frac{1}{d_{h k l}}
$$

Diffraction and Reciprocallattice

Versors \underline{S}_{0} and \underline{S} identify, respectively the incident and scattered beam

$$
\begin{align*}
& \left|\frac{\underline{S}-\underline{S}_{0}}{\lambda}\right|=\frac{2 \sin \theta}{\lambda}=\frac{1}{d}=d^{*} \bullet^{(-120)} \\
& \underline{d}^{*}=\text { scattering vector } \\
& \text { The } \operatorname{Bragg} \text { law in } \\
& \text { reciprocal lattice is } \\
& \frac{s}{}-\underline{S}_{0}=\underline{d}_{h k l}^{*}
\end{align*}
$$

DI FFRACI I O N AND RECI PRO CALS PACE ${ }^{5}$

For a perfect (infinite) crystal
The reciprocal lattice is made of (infinitely small) points representing sets of planes of Miller indices fkl

For a perfect (infinite) crystal the peak width is determined by the instrumental resolution only:

$$
\left|\underline{s}-\underline{s}_{0}\right|=\frac{2 \sin \theta}{\lambda}=\frac{1}{d_{h k l}}=d_{h k l}^{*}
$$

DI FFRACTI O N ANN RECIPRO CALS PACE

For a finite crystal $\quad(\mathcal{L}<1 \mu m)$

Reciprocal lattice points have finite extension. The shape is related to the crystal shape.

Integral breadth: $\beta\left(d^{*}\right)=\frac{\text { Peak Area }}{\text { Peak Maximum }}=\frac{1}{L}$ (Scherrer formula)

RECIPRO CAL LATTICE: DIFFRACTION CONDITIONS

For a given wavelength, the Bragg law sets a limit to the interplanar distances for which diffraction is observed:

$$
\begin{gathered}
\sin \theta=\lambda / 2 d \leq 1 \\
d^{*} \leq \frac{2}{\lambda}
\end{gathered}
$$

All points representing planes that can diffract are inside a sphere of finite radius, $2 / \lambda$ (Gimiting sphere)

Diffraction conditions occur when the tip of the scattering vector d^{*} falls on a point of the reciprocal space.

The condition is fulfilled by all points on the Ewald sphere, a sphere of radius $1 / \lambda$, tangent to the origin and to the $2 / \lambda$ sphere.

In a powder diffraction me asurement, the Ewald sphere can be thought as rotating inside the $2 / \lambda$ sphere.

$\mathfrak{R E C I P R O}$ CAL LATT I CE: DI FFRACTI O N CONDITIONNS

As a consequence, the tip of the scattering vector 'sweeps' the surface of a sptiere of radius d^{*}

During a powder diffraction measurement, the sphere of radius d^{*} swells (for increasing 20) and sweeps the reciprocal space within the limits:

$$
\begin{gathered}
0 \leq d^{*} \leq \frac{2}{\lambda} \\
\left(0 \leq 2 \theta \leq 180^{\circ}\right)
\end{gathered}
$$

Diffraction takes places whenever the scattering vector crosses a reciprocal space point (fKl):

$$
\frac{\underline{s}-\underline{s}_{0}}{\lambda}=\underline{d}_{h k l}^{*}
$$

In a powder diffraction measurement, the sphere of radius d^{*} progressively 'swells' (increasing 20) and sweeps the reciprocal space within the limiting sphere:

All reciprocal space points on the $\mathbb{P D}$ sphere are in diffraction condition \rightarrow multiplicity).

RECIPRO CAL LATTICE：MULTIPLICITY

In a powder（polycrystalline material） measurement，several points can be in diffraction condition simultane ously， i．e．，for the same 2θ ．

This property is expressed by the concept of multeplicity of a diffraction peak，i．e．，the number of equivalent planes．

In cubic structures：

Miller indices	hke	Ffk	0 Kl	0 KK	左后后	001
Multeplicity	48	24	24	12	8	6

PART I

- From single-crystal to powder diffraction
- Intensity scattered from a powder sample
$\mathcal{P A R I} I I$
- Features and aberrations of the powder geometry
- Structure factor and intensity calculations

DI FFRACIION FROM A POWDER

The concept of 'powder'

An ideal powder is a polycrystalline sample (a true powder or a bulk specimen) such that for every possible orientation a sufficiently high number of grains (\rightarrow grain statistics) has atomic planes in Bragg condition (random orientation).
If preferred orientations (texture) are present, suitable models are necessary to account for the 'non-ideal'conditions.

Random orientation

Preferred orientation

Integrated intensity

Intrinsic features of the sample, instrument and measurement geometry cause a dispersion of the scattered intensity across a finite angular range (a peak). The range (width) changes with 2θ. The diffracted signal is better represented by the area of the diffraction peak(integrated intensity) than by maximumintensity.

INTEGRATED INTIENSITY

The integrated intensity of a powder diffraction peak is given by:

INTEGRATED INTENSSITY

\mathcal{A} diffraction measurement basically consists in a cross section through one or more reciprocalspace ($\mathcal{R S}$) points.
The measured intensity depends on:
a) The way $R S$ points are crossed;
6) The sampling in $\mathcal{R S}$ (considering measurements are in 2θ space);
c) The fraction of diffracted signal collected by the detector.

P. Scardi - Diffraction from polycrystalline materials

$\mathcal{T H E}$ LORENTZ $\mathcal{F A C T O R}$

Points a), 6), c) give the so-called Lorentz factor, which depends on the diffractiongeometry. As for the way an fikl point in $\mathbb{R} S$ is "crossed" during a measurement, the effect is:

$$
\propto 1 / \sin (2 \theta)
$$

The fraction of crystalline domains whose planes are in diffraction condition changes with the 2θ angle. This fraction is proportional to the ratio between a stripe of width $r \Delta \theta$ and the total surface of the sphere.

This feature gives a term $\propto \cos (\theta)$

Finally, as shown in the figure below, during a traditional powder diffraction measurement, the X-ray detector spans just a portion ($\sqrt{2})$ of the base circle of the diffraction cone.

This gives a further trigonometric term, proportional to the integrated intensity: $\quad \propto 1 / \sin (2 \theta)$

$$
\mathcal{T H E} \mathcal{L O R E N T Z} \mathcal{F A C I O R}
$$

Putting together the trigonometric terms described so far, we obtain the Lorentz Factor for the powder geometry:

$\mathcal{A n}$ additional trigonometric term is in the Polarization Factor:

$$
P F=\left[1+\cos ^{2}(2 \theta)\right] / 2
$$

$\mathcal{T H E}$ LORENTZ-PO LARIZATION FACTOR

The Lorentz and Polarization factors can be combined in a single trigonometric term: the Lorentz-Polarization factor:

$$
L F=\frac{\cos \theta}{\sin ^{2} 2 \theta} \quad P F=\left[1+\cos ^{2}(2 \theta)\right] / 2 \Longrightarrow \quad \Longrightarrow \quad L P=\frac{1+\cos ^{2}(2 \theta)}{\sin (\theta) \sin (2 \theta)}
$$

$\mathfrak{A B S} O R P I I O \mathcal{N}$

One of the main advantages of the traditional powder diffraction geometry (Bragg-Brentano) is that it does not require θ-dependent correction terms for the absorption of the X-rays.
Consider a beam with cross section \mathcal{A}_{0} and intensity I_{0} impinging with an angle θ_{1}. A small volume $d V$, with thickness $d x$ and surface $A_{0} / \sin \left(\theta_{1}\right)$ diffracts at the angle θ_{2}.

$$
d I=I_{0} e^{-\mu x\left(1 / \sin \theta_{1}+1 / \sin \theta_{2}\right)} d V=\frac{I_{0} A_{0}}{\sin \theta_{1}} e^{-\mu x\left(1 / \sin \theta_{1}+1 / \sin \theta_{2}\right)} d x
$$

$\mathfrak{A B S} O \mathcal{R P I I} O \mathcal{N}$

$$
d I=I_{0} e^{-\mu x\left(1 / \sin \theta_{1}+1 / \sin \theta_{2}\right)} d V=\frac{I_{0} A_{0}}{\sin \theta_{1}} e^{-\mu x\left(1 / \sin \theta_{1}+1 / \sin \theta_{2}\right)} d x
$$

In the traditional powder geometry: $\theta_{1}=\theta_{2}=\theta$
$\mathcal{B y}$ integrating on the sample thickness: $I=\frac{I_{0} A_{0}}{\sin \theta} \int_{0}^{\infty} e^{-2 \mu x / \sin \theta} d x=\frac{I_{0} A_{0}}{2 \mu}$

Indipendent
of θ

INTEGRATED INTENS I TY

If terms for absorption (μ), cell volume $\left(v_{a}\right)$, goniometer radius (r) and wavelenght (λ) are furitten explicitly, $k^{\prime}=k \lambda^{3} / \mu r v_{a}^{2}$

$I \mathfrak{N T E G R A \mathcal { E D }} \operatorname{INTENS} I \mathcal{T} \mathcal{Y}$

If the secondary circle of a crystal monochromator (analyzer) is present at $\theta_{m^{\prime}}$ the polarization factor must be written as:

PART I

- From single-crystal to powder diffraction
- Intensity scattered from a powder sample
$\mathcal{P A R I} I I$
- Features and aberrations of the powder geometry
- Structure factor and intensity calculations

BRAGG-BRENT ANO GEOMETRV

The instrumental profile results from a convolution of several effects:

$$
g=g_{I} \otimes g_{I I} \otimes g_{I I I} \otimes g_{I V} \otimes \ldots
$$

The main contributions are those due to:

- Emission profile
- Flat sample
- Axial Divergence
- Sample transparency
- Receiving slit

DI FFRACT O \mathcal{N} PRO $\mathcal{F} I \mathcal{L E}$ I $\mathcal{T H E}$ PO WDER GEO NET RV
$\mathcal{H} . \mathcal{P} . \mathcal{K l u g}$ \& L.E. Ale xander, X-ray Diffraction procedures, Wiley, New York, 1974

(B)

$$
g=g_{I} \otimes g_{I I} \otimes g_{I I I} \otimes g_{I V} \otimes \ldots
$$

Emission profile: the $K \alpha_{1} / K \alpha_{2}$ double :

Cu K α emission profile as modelled by four Lorentzians

$\mathcal{E M I S}$ S I O N PRO FI LE

Line widt (Γ), asymmetry (κ) and emission energy (\mathcal{E}) for the z α components of $\mathcal{C u}, \mathcal{C r}, \mathcal{F e}, \mathcal{C o}$. Note that two average \mathcal{Z} components are most frequently used instead of the four in the previous figure

	K_{1}			$\mathrm{~K} \alpha_{2}$		
	$\mathrm{E}(\mathrm{keV})$	$\Gamma(\mathrm{eV})$	κ	$\mathrm{E}(\mathrm{keV})$	$\Gamma(\mathrm{eV})$	κ
Cu	8.048	2.56	1.12	8.028	4.05	1.10
Cr	5.415	2.16	1.38	5.406	2.75	1.18
Fe	6.404	2.35	1.43	6.391	2.84	1.25
Co	6.930	2.87	1.32	6.915	3.59	1.25

EMI S S I O N PRO FI LE

Cu K emission spectrum with two components (a). FWWHM of the emission spectrum ($\mathcal{K} \alpha_{1}$ component) as a function of the diffractionangle, 2日) (b).

$$
\lambda=\frac{c}{v}=\frac{c h}{E}=\frac{12398}{E} \quad\left|\frac{d \lambda}{\lambda}\right|=\left|\frac{d E}{E}\right|=\frac{2 d \cos \theta \cdot d \theta}{2 d \sin \theta}=\frac{d(2 \theta)}{2 \tan \theta} \quad \Rightarrow d(2 \theta)=2\left|\frac{d E}{E}\right| \tan \theta
$$

In addition to peak position, maximum and integrated intensity, a useful quantity is the integral breadth (β), defined as the ratio between peak area and maximum intensity.

Relation between integralbreadth in reciprocal space and 2θ space

$$
\beta(2 \theta)=\beta\left(d^{*}\right) \cdot \frac{\lambda}{\cos \theta}
$$

Nowadays, the most popular data processing programs make use of analytical profile fitting. The basic algoritim (eventhough not the only one, probably not always the Gest) adopts anon-line ar least squares ($\mathcal{N}(\mathcal{L S}$) minimizationengine.

The quantity to minimize is:

$$
S_{y}^{2}=\sum w_{i}^{2}\left[y_{i, o}-y_{i, c}\right]^{2}
$$

where $y_{i, 0}$ and $y_{i, c}$ are respectively the observed and calcualted intensities, whereas the weight is $w_{i}=1 / \sqrt{y_{i, o}}$.

Calculated (model) intensities, $y_{i, c}$, are typically described by bell-sfiaped analyticalcurves, like:

Gaussian, Lorentzian, pseudo-Voigt, Voigt or Person VI I functions.

Analitycal profile functions commonly used in peak profile fitting:

$$
\begin{gathered}
x=2 \theta-2 \theta_{0} \text { or } d^{*}-d_{h k l}^{*} \\
G\left(x, \beta_{G}\right)=I_{o} \cdot \exp \left(-\frac{\pi x^{2}}{\beta_{G}^{2}}\right) \quad C\left(x, \beta_{C}\right)=\frac{I_{o}}{1+\frac{\pi^{2} x^{2}}{\beta_{C}^{2}}} \\
p V(x)=I_{o}\left[(1-\eta) \cdot G\left(x, \beta_{G}\right)+\eta \cdot C\left(x, \beta_{C}\right)\right]= \\
=I_{o}\left[(1-\eta) \cdot \exp \left(-\frac{\pi x^{2}}{\beta_{G}^{2}}\right)+\eta \cdot \frac{1}{1+\frac{\pi^{2} x^{2}}{\beta_{C}^{2}}}\right]
\end{gathered}
$$

Ulseful properties of the pV function are, e.g., that the $I \mathcal{B}$ is simply given $6 y$:

$$
\beta_{p V}=(1-\eta) \beta_{G}+\eta \beta_{c}
$$

if \mathcal{G} and C components of the $p \mathcal{V}$ have the same width ($\mathcal{H} \mathcal{W} \mathcal{H} \mathcal{M})$. It is also possible to use 'Split $p \mathcal{V}$ ', with right (\mathcal{R}) and left (L) $\mathcal{H} \mathcal{W} \mathcal{H} \mathcal{M s}$:

$$
p V(x)=I_{o} \cdot\left[(1-\eta) \cdot \exp \left(-\ln (2) \frac{x^{2}}{\omega_{L, R}^{2}}\right)+\eta \cdot \frac{1}{1+\frac{x^{2}}{\omega_{L, R}^{2}}}\right]
$$

Fit quality is typically expressed by suitable statisticalquality indices:

$$
\begin{aligned}
& \quad S_{y}^{2}=\sum_{i} w_{i}^{2}\left[y_{i, o}-y_{i, c}\right]^{2} \\
& R_{w p}=\left\{S_{y}^{2} / \sum_{i} w_{i}^{2} y_{i, o}^{2}\right\}^{1 / 2} \\
& R_{\exp }=\left[(N-P) / \sum_{i} w_{i} y_{i, o}^{2}\right]^{1 / 2} \\
& G o F=R_{w p} / R_{\exp }
\end{aligned}
$$

where \mathcal{N} is the number of data points, \mathcal{P} is the number of fit parameters.

$\mathcal{A N} \mathcal{A L} \mathcal{I} I C A \perp \mathcal{P R O} \mathcal{F} I \mathcal{L E} \mathcal{F} I T \mathcal{T} I \mathcal{N G}$

$g(\epsilon)$
Final profile

$$
g=g_{I} \otimes g_{I I} \otimes g_{I I I} \otimes g_{I V} \otimes \ldots
$$

The observed profile ($(\sqrt{ })$ is a convolution of the instrumental profle (g) with the 'true' diffraction profile due to microstructure and Cattice defects of the studied sample (f)

$$
h(\eta)=f(\eta-\varepsilon) \otimes g(\varepsilon)
$$

f profile \rightarrow smallcrystalline domain size, dislocations, faulting, etc.

$\mathscr{A} \mathcal{N} \mathcal{A} \mathcal{Y} \mathcal{T} I C A L \mathcal{P R O} \mathcal{F} I L \mathcal{E} \mathcal{F} I \mathcal{T} \mathcal{T} I \mathcal{N} G$

In many cases f, g, f profiles can be described by Voigtian functions. When using pseudoVoigt functions $\left(x=2 \theta-2 \theta_{0}\right.$ or $\left.d^{*}-d_{h k l}^{*}\right)$:

$$
p V(x)=I_{o}\left[(1-\eta) \cdot \exp \left(-\frac{\pi x^{2}}{\beta^{2}}\right)+\eta \cdot \frac{1}{1+\frac{\pi^{2} x^{2}}{\beta^{2}}}\right]
$$

For the g (instrumental) profile, mixing parameter (η) and width (β) can be parameterized as:

$$
\begin{aligned}
& F W H M=\left(U \tan ^{2} \theta+V \tan \theta+W\right)^{1 / 2} \\
& \eta=a+b \cdot \theta+c \theta^{2}
\end{aligned}
$$

-

XRDLab at Tr ento. Rigaku PMG $/ \mathcal{V} \mathcal{H}$: instrumental (g) profile

If both f and g profile components are assumed to be Voigtian, the fir profile is also Voigtian and is given by:

$$
\begin{aligned}
& \beta_{h C}=\beta_{g C}+\beta_{f C} \\
& \beta_{h G}=\sqrt{\beta_{g G}^{2}+\beta_{f G}^{2}}
\end{aligned}
$$

If g is known, fitting the experimentaltr profile allows one to obtain the f profile:

$$
\beta_{f}=(1-\eta) \beta_{f G}+\eta \beta_{f c}
$$

The integral breadth of the 'true' profile (f) can be used, e.g., with the Scherrer formula:

Analytical expressions of peak position aberrations.

	Centroid aberration	Parameters
Sample displacement	$\frac{-2 d \cos \theta}{R}$	d - sample displacement R - goniometer radius
Flat specimen	$-\frac{1}{6} \alpha^{2} \cot \theta$	α - divergence slit
Sample transparency	$\frac{-\sin (2 \theta)}{2 \mu R}$	μ - linear absorption coeff. R - goniometer radius
Axial Divergence	$-\frac{1}{6} \delta^{2} \cot (2 \theta)$	δ - Soller slit (half aperture)
Refraction	$2(1-r) \tan \theta$	R - index of refraction
Polarization	$\frac{2 W \tan \theta}{d^{2}}$	W - (${ }^{\circ}$) d - interplanar spacing
Lorentz Factor and Dispersion	$\frac{3 W \tan ^{3} \theta}{\lambda^{2}}$	W - (${ }^{\circ}$) λ - wavelength

$\left({ }^{\circ}\right)$ As an estimate of W, Wilson suggests to use $1 / 3$ of the square of the doublet separation.

ABERRAIIONS OF THE PO WDER GEO METRV

Shift of sample position with respect to the goniometer axis

Width of the divergence slit

АВЕR欠凡TIONS OF THE PO WDER GEO METRV

ABERRATIONS OF THE PO WDER GEO METRY

Errors in peakpositions: NISTSRM1976alumina. D.S. $1 / 2^{\circ}$ or 1°. Other parameters are the same (radius 250 mm , Soller $2^{\circ}, \mathcal{R} . S .0 .15 \mathrm{~mm}$).

Like many natural phenomena related to the generation of random events with a finite time average, X-ray emission follows the PO ISSON $\operatorname{statistics}$

$$
p(n)=\frac{N^{n}}{n!} e^{-N}
$$

where n is a positive integer. \mathcal{N} is the mean value:

$$
\bar{n}=\sum_{n=0}^{\infty} n p(n)=\sum_{n=0}^{\infty} N \frac{N^{n-1}}{(n-1)!} e^{-N}=N e^{-N} e^{N}=N
$$

If \mathcal{N} is the mean value of the counts collected for a certain time, the standard deviation σ_{n} is obtained from:

$$
\sigma_{n}^{2}=\overline{(n-N)^{2}}=\overline{\left(n^{2}+N^{2}-2 n N\right)}=N^{2}+N-N^{2}=N
$$

The standard deviation is given by

$$
\sigma_{n}=\sqrt{N}
$$

$\mathfrak{A n d}$ the relative standard deviation is:

$$
\sigma_{n, \text { rel }}=\frac{\sqrt{N}}{N}=\frac{1}{\sqrt{N}}
$$

When a background is present with $\mathcal{N}_{\mathcal{B}}$ counts, if $N_{T}=N_{P}+N_{B}$ is the total counts $\left(\mathcal{N}_{\mathbb{P}}\right.$ is the net peak area, with background subtracted), the relative standard deviation (in percentage) is:

$$
\sigma_{P}=\frac{\sqrt{N_{T}+N_{B}}}{N_{T}-N_{B}} \times 100
$$

The signal-to-noise ratio, \mathcal{R}, is defined as: $\quad R=N_{T} / N_{B}$

$$
\sigma_{P}=\frac{1}{R-1} \sqrt{\frac{R(R+1)}{N_{T}}} x 100
$$

An implicit assumption of all the above reasoning is that the powder sample is homogeneous, even on a microscopic level. This is just an approximation, because samples are made of finite size grains.

If grains (actually, crystalline domains) are not sufficiently small, the concept of powder tends to lose its meaning, in the sense that it is not true anymore that for any direction there is a sufficiently Carge number of domains with atomic planes in $\mathcal{B r a g g}$ conditions.

Depending on the absorption coefficient, the critical threshold for the domain size changes. In particular, the problem of faving sufficiently smallgrains is criticalfor fighly absorbing materials.

 GRAINSTATISTICS

The figure below shows the intensity collected for the same reflection of quartz for different specimens of the same powder sample (from 1 to 10), prepared by selecting different granulometric fractions. The smallest deviations are obtained below $5 \mu \mathrm{~m}$.

The data shown before also reveal a further effect. For the large grains, the decrease in intensity caused by absorption is increased Gy the fact that the fraction of diffracted intensity is also larger for these grains. Consequently, the signal is lower than that given by the same volume made of smaller (less absorbing) grains.

Mean values and standard deviations for the data of previous Figure

	$15-50 \mu \mathrm{~m}$	$5-50 \mu \mathrm{~m}$	$5-15 \mu \mathrm{~m}$	$<5 \mu \mathrm{~m}$
Mean	8512	9207	11267	11293
Standard deviation	$2081(24 \%)$	$1163(13 \%)$	$293(2.6 \%)$	$157(1.4 \%)$

This effect (extintion), together with microabsorption is one of the factors limiting the reliability of powder diffraction measurements. It is a particularly critical issue in quantitative phase analysis.

References

[1] G. Hölzer, M. Fritsch, M. Deutsch, J. Härtwig \& E. Förster, Phys. Rev. A 56 (1997) 4554-4568.
[2] S.I. Salem \& P.L. Lee, At. Data Nucl. Data Tables 18 (1976) 234-240.
[3] NIST - National Institute of Standard and Technology, Gaithersburg, MA, USA; http://www.nist.gov
[4] J. Bergmann, R. Kleeberg, A. Haase \& B. Breidenstein, Mat. Sci. Forum 347-349 (2000) 303-308.
[5] TOPAS, Bruker AXS, 2000. http://www.bruker-axs.com
[6] Y.H. Dong and P. Scardi, J. Applied Crystallography 33 (2000) 184-189.
[7] R.W. Cheary \& A.A. Coelho, J. Applied Crystallography 25 (1992) 109-121; R.W. Cheary \& A.A. Coelho, Powder Diffraction 13 (1998) 100-107.
[8] H.P. Klug \& L.E. Alexander, X-ray Diffraction procedures, Wiley, New York, 1974.
[9] A.J.C. Wilson, Mathematical Theory of Xray Powder Diffractometry, Philips Technical Library, Eindhoven, The Netherlands, 1963.
[10] G.K. Wertheim, M.A. Butler,K.W. West \& D.N.E. Buchanan, Rev. Sci. Instrum. 45 (1974) 1369-1371.
[11] R.A.Young, The Rietveld method, Oxford University Press, Oxford, 1993.
[12] P. Scardi \& M. Leoni, J. Applied Crystallography 32 (1999) 671-682.
[13] I.J. Langford, J. Applied Crystallography 11 (1978) 10-14.
[14] M. Leoni, P. Scardi, I.J. Langford, Powder Diffraction 13 (1998) 210-215.
[15] I.J. Langford, in Accuracy in Powder Diffraction II, NIST Special Publication 846, edited by E. Prince \& J.K. Stalick, pp. 110-126. Washington: USG Printing Office, 1992.
[16] M. Ahtee, L. Unonius, M. Nurmela, P. Suortti, J. Applied Crystallography 17 (1984) 352-258.
[17] L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi,J. Applied Crystallography 32 (1999) 36-50.

PART I

- From single-crystal to powder diffraction
- Intensity scattered from a powder sample

$\mathcal{P A R T} I I$

- Features and aberrations of the powder geometry
- Structure factor and intensity calculations

STRUCTURE FACIOR CALCULATION

Primitive cell $(\mathcal{P})(Z=1)$ with one atomic species only

$$
\begin{aligned}
& F=f e^{2 \pi i(0 \cdot h+0 \cdot k+0 \cdot l)}=f \\
& I \propto|F|^{2}=f^{2}
\end{aligned}
$$

The structure factor is the same for all (hkl) refections

Body centred lattice (I) ($Z=2)$ with one atomic species only in $(0,0,0)$ and (1/2, $1 / 2,1 / 2$)
$F=f e^{2 \pi i(0)}+f e^{2 \pi i(h / 2+k / 2+l / 2)}=f\left[1+e^{\pi i(h+k+l)}\right]=\left\{\begin{array}{lll}0 & h+k+l & \text { odd } \\ 2 f & h+k+l & \text { even }\end{array}\right.$

The intensity is proportional to $4 f^{2}$ for reflections with even sum of indices, and it is zero for those with odd sum of indices

Face centred lattice (\mathcal{F}) $(Z=4)$ with one atomic species only in $(0,0,0)$, ($0,1 / 2,1 / 2$), (1/2, 0, 1/2) and ($1 / 2,1 / 2,0$)

$$
F=f e^{2 \pi i(0)}+f e^{2 \pi i(0+k / 2+l / 2)}+f e^{2 \pi i(h / 2+0+l / 2)}+f e^{2 \pi i(h / 2+k / 2+0)}
$$

$$
=f\left[1+e^{\pi i(k+l)}+e^{\pi i(h+l)}+e^{\pi i(h+k)}\right]=\left\{\begin{array}{lll}
0 & h, k, l & \text { mixed } \\
4 f & h, k, l & \text { unmixed }
\end{array}\right.
$$

The intensity of proportional to $16 f^{2}$ for reflections with mixed indices and it is zero for those with unmixed indices

$S \mathcal{T R L C I U R E ~ F A C T O R ~ C A L C U L A T I O N}$

P	I	F
(100)	-	-
(110)	(110)	-
(111)	-	(111)
(200)	(200)	(200)
(210)	-	-
(211)	(211)	-
(220)	(220)	(220)
$(300) /(221)$	-	-
(310)	(310)	-
(311)	-	(311)
(222)	$(222$	(222)
(320)	-	-
(321)	(321)	-
(400)	(400)	(400)

The structure factor is independent of shape and size of the unit cell.

Rule s shown in the previous examples are then valid for any \mathcal{P}, I, or \mathcal{F} cells.

$\mathcal{E X A M} \mathcal{A} \mathcal{E}$

Calculated integrated intensity for the reflections of Fluorite

Ffuorite $\left(\mathrm{CaF}_{2}\right): \operatorname{fcc}(Z=4)$ unit cell.
Cations $\left(\mathrm{Ca}^{+2}, r=0.99 \mathfrak{A}\right)$ in the origin and positions equivalent by $f c c$ Translations.
Anions $\left(\mathcal{F}^{-1}, \mathcal{R}=1.33 \mathscr{A}\right)$ in $(1 / 4,1 / 4,1 / 4),(1 / 4,1 / 4,3 / 4)$ and positions equivalent by fcc Translations.

$$
\mathrm{Ca}^{+2}(0,0,0)+f c c
$$

$$
\mathrm{F}^{-1} \quad(1 / 4,1 / 4,1 / 4),(1 / 4,1 / 4,3 / 4)+f c c .
$$

$$
\begin{aligned}
F & =4\left[f_{C a}+f_{F} e^{\frac{i \pi}{2}(h+k+l)}+f_{F} e^{\frac{i \pi}{2}(h+k+3 l)}\right]=4\left[f_{C a}+f_{F}\left(e^{\frac{i \pi}{2}(h+k+l)}+e^{\frac{i \pi}{2}(h+k-l)}\right]=\right. \\
& =4\left[f_{C a}+2 f_{F} e^{\frac{i \pi}{2}(h+k)} \cos \left(\frac{\pi l}{2}\right)\right] \\
|F|^{2} & =16\left\{f_{C a}^{2}+4 f_{F}^{2} \cos ^{2}\left(\frac{\pi l}{2}\right)+4 f_{C a} f_{F}\left[e^{\frac{i \pi}{2}(h+k)}+e^{-\frac{i \pi}{2}(h+k)}\right] \cos \left(\frac{\pi l}{2}\right)\right\}= \\
& =16\left\{f_{C a}^{2}+4 f_{F}^{2} \cos ^{2}\left(\frac{\pi l}{2}\right)+4 f_{C a} f_{F} \cos \left[\frac{\pi}{2}(h+k)\right] \cos \left(\frac{\pi l}{2}\right)\right\}
\end{aligned}
$$

$$
|F|^{2}=16\left\{f_{C a}^{2}+4 f_{F}^{2} \cos ^{2}\left(\frac{\pi l}{2}\right)+4 f_{C a} f_{F} \cos \left[\frac{\pi}{2}(h+k)\right] \cos \left(\frac{\pi l}{2}\right)\right\}
$$

The expression simplifies consideraning that $\sqrt[\pi]{ }, \mathcal{L}$ are integers:

$$
\begin{array}{ll}
|F|_{A}^{2}=16 f_{C a}^{2} & l \text { odd } \\
|F|_{B}^{2}=16\left(f_{C a}-2 f_{F}\right)^{2} & (h+k) \text { or } l \text { odd multiple of } 2 \\
|F|_{C}^{2}=16\left(f_{C a}+2 f_{F}\right)^{2} & (h+k) \text { and } l, \text { both odd or both even multiple of } 2
\end{array}
$$

(111)	(200)	(220)	(311)	(222)	(400)	(331)	(420)	(422)	(333)	(511)	(440)	(531)	(600)	
$\|F\|_{A}^{2}$	$\|F\|_{B}^{2}$	$\|F\|_{C}^{2}$	$\|F\|_{A}^{2}$	$\|F\|_{B}^{2}$	$\|F\|_{C}^{2}$	$\|F\|_{A}^{2}$	$\|F\|_{B}^{2}$	$\|F\|_{C}^{2}$	$\left.F\right\|_{A} ^{2}$	$\\|\left. F\right\|_{A} ^{2}$	$\|F\|_{C}^{2}$	$\|F\|_{A}^{2}$	$\|F\|_{B}^{2}$	

$|F|_{A}^{2}=16 f_{C_{A}}^{2} \quad l$ odd
$|F|_{B}^{2}=16\left(f_{C a}-2 f_{F}\right)^{2} \quad(h+k)$ or l odd multiple of 2
$|F|_{C}^{2}=16\left(f_{C a}+2 f_{F}\right)^{2} \quad(h+k)$ and l, both odd or both even multiple of 2

Atomic scattering factor (f) :

Dispersion corrections:

	Ca	F
Δf^{\prime}	0.3	0.0
$\Delta f^{\prime \prime}$	1.4	0.1

$\rightarrow\left(f+\Delta f^{\prime}\right)+i \Delta f^{\prime \prime}$

De bye-Waller factors:
$B(C a)=0.47 \AA^{2}, B(F)=0.67 \AA^{2}$

$$
\begin{aligned}
|F|_{A}^{2} & =16 f_{C a}^{2} \\
|F|_{B}^{2} & =16\left(f_{C a}-2 f_{F}\right)^{2} \quad(h+k) \text { or } l \text { odd multiple of } 2 \\
|F|_{C}^{2} & =16\left(f_{C a}+2 f_{F}\right)^{2} \quad(h+k) \text { and } l, \text { both odd or both even multiple of } 2 \\
\left|F_{T}\right|_{A}^{2} & =16 f_{C a}^{2} e^{-2 M_{C a}}=16\left[\left(f_{0, C a}+\Delta f_{C a}^{\prime}\right)^{2}+\left(\Delta f_{C a}^{\prime \prime}\right)^{2}\right] e^{-2 M_{C a}} \\
\left|F_{T}\right|_{B}^{2} & =16\left(f_{C a} e^{-M_{C a}}-2 f_{F} e^{-M_{F}}\right)^{2}= \\
& =16\left\{\left[\left(f_{0, C a}+\Delta f_{C a}^{\prime}\right) e^{-M_{C a}}-2\left(f_{0, F}+\Delta f_{F}^{\prime}\right) e^{-M_{F}}\right]^{2}+\left(\Delta f_{C a}^{\prime \prime} e^{-M_{C a}}-2 \Delta f_{F}^{\prime \prime} e^{-M_{F}}\right)^{2}\right\} \\
\left|F_{T}\right|_{C}^{2} & =16\left(f_{C a} e^{-M_{C a}}+2 f_{F} e^{-M_{F}}\right)^{2}= \\
& =16\left\{\left[\left(f_{0, C a}+\Delta f_{C a}^{\prime}\right) e^{-M_{C a}}+2\left(f_{0, F}+\Delta f_{F}^{\prime}\right) e^{-M_{F}}\right]^{2}+\left(\Delta f_{C a}^{\prime \prime} e^{-M_{C a}}+2 \Delta f_{F}^{\prime \prime} e^{-M_{F}}\right)^{2}\right\}
\end{aligned}
$$

$$
|F|_{A}^{2}=16 f_{C a}^{2} \quad l \text { odd }
$$

$$
|F|_{B}^{2}=16\left(f_{C a}-2 f_{F}\right)^{2} \quad(h+k) \text { or } l \text { odd multiple of } 2
$$

$$
|F|_{C}^{2}=16\left(f_{C a}+2 f_{F}\right)^{2} \quad(h+k) \text { and } l, \text { both odd or both even multiple of } 2
$$

$\mathcal{F L U O R I T \mathcal { E }}$ PO WDER PATIERX

$$
\begin{array}{ll}
|F|_{A}^{2}=16 f_{C a}^{2} & l \text { odd } \\
|F|_{B}^{2}=16\left(f_{C a}-2 f_{F}\right)^{2} & (h+k) \text { or } l \text { odd multiple of } 2 \\
|F|_{C}^{2}=16\left(f_{C a}+2 f_{F}\right)^{2} & (h+k) \text { and } l, \text { both odd or both even multiple of } 2
\end{array}
$$

$h k l$	2θ	$\sin \theta / \lambda$	$L P$	p	$e^{-B(C a) \frac{\sin ^{2} \theta}{\lambda^{2}}}$	$e^{-B(F) \frac{\sin ^{2} \theta}{\lambda^{2}}}$	$e^{-\overline{-s^{\text {sin }}{ }^{2} \theta} \lambda^{2}}$	$f_{0, C a^{+2}}$	$f_{0, F^{-1}}$	$\left\|F_{T}\right\|_{A}^{2}$	$\left.F_{T}\right\|_{B} ^{2}$	$\left.F_{T}\right\|_{C} ^{2}$	Int (${ }^{\text {¢ }}$)	Int ${ }^{\prime}$ (${ }^{\prime}$)
111	28.27	0.1585	15.00	8	0.988	0.983	0.985	15.53	7.99	3947			86.3	86.3
200	32.76	0.1830	10.94	6	0.984	0.978	0.979	14.87	7.49		24		0.3	0.3
220	47.00	0.2588	4.94	12	0.969	0.956	0.959	12.77	5.93			9259	100.0	100.0
311	55.76	0.3035	3.36	24	0.958	0.940	0.944	11.61	5.12	2109			31.0	30.4
222	58.48	0.3171	3.02	8	0.954	0.935	0.940	11.28	4.90		79		0.3	0.3
400	68.67	0.3661	2.14	6	0.939	0.914	0.920	10.22	4.18			4950	11.6	11.5
331	75.85	0.3989	1.77	24	0.928	0.899	0.906	9.62	3.79	1382			10.7	10.3
420	78.18	0.4093	1.68	24	0.924	0.894	0.901	9.45	3.68		114		0.8	0.7
422	87.37	0.4483	1.45	24	0.910	0.874	0.883	8.87	3.31			3228	20.5	20.1
$\begin{aligned} & 333 \\ & 511 \end{aligned}$	94.22	0.4756	1.38	$\begin{gathered} 8 \\ 24 \\ \hline \end{gathered}$	0.899	0.859	0.869	8.52	3.07	$\begin{aligned} & 1032 \\ & 1032 \end{aligned}$			$\begin{aligned} & 2.1 \\ & 6.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9 \\ & 5.8 \end{aligned}$
440	105.8	0.5177	1.39	12	0.882	0.836	0.847	8.03	2.71		0	2288	7.0	6.8
531	113.06	0.5415	1.49	48	0.871	0.822	0.834	7.76	2.50	812			10.6	9.8
600	115.57	0.5492	1.54	6	0.868	0.817	0.829	7.67	2.44	0	155		0.3	0.2

$a_{0}=5.463 \AA \quad \theta_{m}=13.28^{\circ} \quad M=B(\sin \theta / \lambda)^{2} \quad \lambda=1.540598 \AA$

Experimental pattern of fluorite powder: profile fitting results

(hkl)	2θ	$d_{\text {hkl }}$	$I_{\text {max }}$	Area	Int	$H W H M ~_{f}$		$H W H M_{h} \eta$	
111	28.267	3.1546	$\begin{aligned} & 1676 \\ & (25) \end{aligned}$	318.5	83.66	$\begin{gathered} \hline 0.0619 \\ (0.0015) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.41 \\ (0.02) \\ \hline \end{gathered}$	0.073	0.47
200	32.754	2.7320	$\begin{aligned} & 12 \\ & (3) \\ & \hline \end{aligned}$	1.7	0.44	$\begin{gathered} 0.051 \\ (0.016) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 0.00 \\ (0.15) \\ \hline \end{array}$	0.061	0.15
220	47.000	1.9318	$\begin{aligned} & 1688 \\ & (21) \\ & \hline \end{aligned}$	379.9	100	$\begin{gathered} \hline 0.0528 \\ (0.0013) \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \\ (0.04) \end{gathered}$	0.074	0.91
311	55.754	1.6474	$\begin{aligned} & 453 \\ & (13) \\ & \hline \end{aligned}$	124.2	32.68	$\begin{gathered} 0.066 \\ (0.006) \\ \hline \end{gathered}$	$\begin{array}{r} 1.00 \\ (0.13) \\ \hline \end{array}$	0.089	0.94
222	58.467	1.5773	$\begin{gathered} 10 \\ (2) \\ \hline \end{gathered}$	1.5	0.41	$\begin{gathered} 0.041 \\ (0.024) \\ \hline \end{gathered}$	$\begin{gathered} 0.23 \\ (0.85) \\ \hline \end{gathered}$	0.058	0.47
400	68.654	1.3660	167 (7)	48.6	12.78	$\begin{gathered} 0.067 \\ (0.009) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.00 \\ (0.21) \\ \hline \end{array}$	0.094	0.94
331	75.833	1.2535	$\begin{aligned} & 117 \\ & (6) \\ & \hline \end{aligned}$	42.7	11.23	$\begin{gathered} 0.088 \\ (0.013) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1.00 \\ (0.22) \\ \hline \end{array}$	0.118	0.96
420	78.171	1.2218	$\begin{array}{r} 14 \\ (2) \\ \hline \end{array}$	4.6	1.22	$\begin{gathered} 0.077 \\ (0.045) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.00 \\ (0.94) \\ \hline \end{array}$	0.108	0.95
422	87.364	1.1153	$\begin{aligned} & 221 \\ & (7) \\ & \hline \end{aligned}$	83.6	22.01	$\begin{gathered} 0.086 \\ (0.010) \\ \hline \end{gathered}$	$\begin{array}{\|r\|} \hline 1.00 \\ (0.16) \\ \hline \end{array}$	0.122	0.97
$\begin{aligned} & 333 \\ & 511 \\ & \hline \end{aligned}$	94.201	1.0515	$\begin{array}{r} \hline 21(1) \\ 64(14) \\ \hline \end{array}$	$\begin{gathered} \hline 8.5 \\ 25.6 \end{gathered}$	$\begin{array}{r} 2.24 \\ 6.73 \\ \hline \end{array}$	$\begin{gathered} 0.089 \\ (0.017) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.00 \\ (0.29) \\ \hline \end{array}$	0.129	0.97
440	105.784	0.9659	$\begin{array}{r} 50 \\ (3) \\ \hline \end{array}$	28.0	7.37	$\begin{gathered} 0.131 \\ (0.026) \\ \hline \end{gathered}$	$\begin{array}{\|r} 1.00 \\ (0.31) \\ \hline \end{array}$	0.179	0.99
531	113.033	0.9236	$\begin{array}{r} 79 \\ \text { (4) } \\ \hline \end{array}$	44.3	11.65	$\begin{gathered} 0.125 \\ (0.020) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1.00 \\ (0.26) \\ \hline \end{array}$	0.179	0.99
600	115.532	0.9107	$\begin{gathered} 7 \\ \text { (2) } \\ \hline \end{gathered}$	5.4	1.42	$\begin{gathered} \hline 0.19 \\ (0.11) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.00 \\ (0.93) \\ \hline \end{array}$	0.251	0.99

Comparison between calculated and measured integrated intensities:

$h k l$	2θ	Calculated Integ. Int.	Experimental Integ. Int.
111	28.27	$\mathbf{8 6 . 3}$	$\mathbf{8 3 . 7}$
200	32.76	$\mathbf{0 . 3}$	$\mathbf{0 . 4}$
220	47.00	$\mathbf{1 0 0 . 0}$	$\mathbf{1 0 0 . 0}$
311	55.76	$\mathbf{3 1 . 0}$	$\mathbf{3 2 . 7}$
222	58.48	$\mathbf{0 . 3}$	$\mathbf{0 . 4}$
400	68.67	$\mathbf{1 1 . 6}$	$\mathbf{1 2 . 8}$
331	75.85	$\mathbf{1 0 . 7}$	$\mathbf{1 1 . 2}$
420	78.18	$\mathbf{0 . 8}$	$\mathbf{1 . 2}$
422	87.37	$\mathbf{2 0 . 5}$	$\mathbf{2 2 . 0}$
333	94.22	$\mathbf{2 . 1}$	$\mathbf{2 . 2}$
511		$\mathbf{6 . 2}$	$\mathbf{6 . 7}$
440	105.8	$\mathbf{7 . 0}$	$\mathbf{7 . 4}$
531	113.06	$\mathbf{1 0 . 6}$	$\mathbf{1 1 . 6}$
600	115.57	$\mathbf{0 . 3}$	$\mathbf{1 . 4}$

Counting statistics: $\quad \sigma_{P}=\frac{\sqrt{N_{T}+N_{B}}}{N_{T}-N_{B}} \times 100$

$h k l$	$\mathrm{I}_{\text {rel }}$ $(\%)$	$2 \theta_{\text {start }}$ (gradi)	$2 \theta_{\text {end }}$ (conteggi)	N_{B} (conteggi)	$N_{P}=N_{P}+N_{B}$ $(\%)$	
111	83.66	26.75	29.65	177	9452	$\mathbf{1 . 0}$
200	0.44	31.45	33.90	141	224	$\mathbf{2 3 . 0}$
220	100	45.45	48.40	141	11037	$\mathbf{1 . 0}$
311	32.68	53.90	57.45	154	3770	$\mathbf{1 . 7}$
222	0.41	57.25	59.55	98	243	$\mathbf{1 2 . 7}$
400	12.78	66.70	70.45	147	1612	$\mathbf{2 . 9}$
331	11.23	73.40	78.10	177	1538	$\mathbf{3 . 0}$
420	1.22	75.95	80.25	161	919	$\mathbf{4 . 3}$
422	22.01	84.85	89.75	182	2679	$\mathbf{2 . 1}$
$333 / 511$	$2.24 / 6.73$	91.55	96.70	194	1287	$\mathbf{3 . 5}$
440	7.37	102.15	109.30	286	1243	$\mathbf{4 . 1}$
531	11.65	109.35	116.55	306	1865	$\mathbf{3 . 0}$
600	1.42	110.45	119.95	413	2014	$\mathbf{3 . 1}$

Comparison betwe en calculated and measured integrated intensities:

$h k l$	2θ	Calculated Integ. Int.	Experimental Integ. Int.	σ_{P} $(\%)$
111	28.27	$\mathbf{8 6 . 3}$	$\mathbf{8 3 . 7}$	$\mathbf{1 . 0}$
200	32.76	$\mathbf{0 . 3}$	$\mathbf{0 . 4}$	$\mathbf{2 3 . 0}$
220	47.00	$\mathbf{1 0 0 . 0}$	$\mathbf{1 0 0 . 0}$	$\mathbf{1 . 0}$
311	55.76	$\mathbf{3 1 . 0}$	$\mathbf{3 2 . 7}$	$\mathbf{1 . 7}$
222	58.48	$\mathbf{0 . 3}$	$\mathbf{0 . 4}$	$\mathbf{1 2 . 7}$
400	68.67	$\mathbf{1 1 . 6}$	$\mathbf{1 2 . 8}$	$\mathbf{2 . 9}$
331	75.85	$\mathbf{1 0 . 7}$	$\mathbf{1 1 . 2}$	$\mathbf{3 . 0}$
420	78.18	$\mathbf{0 . 8}$	$\mathbf{1 . 2}$	$\mathbf{4 . 3}$
422	87.37	$\mathbf{2 0 . 5}$	$\mathbf{2 2 . 0}$	$\mathbf{2 . 1}$
333	94.22	$\mathbf{2 . 1}$	$\mathbf{2 . 2}$	$\mathbf{3 . 5}$
511		$\mathbf{6 . 2}$	$\mathbf{6 . 7}$	
440	105.8	$\mathbf{7 . 0}$	$\mathbf{7 . 4}$	$\mathbf{4 . 1}$
531	113.06	$\mathbf{1 0 . 6}$	$\mathbf{1 1 . 6}$	$\mathbf{3 . 0}$
600	115.57	$\mathbf{0 . 3}$	$\mathbf{1 . 4}$	$\mathbf{3 . 1}$

Result using the Rie tveld method (TOPAS ©):

REFERENCES

[1] International Tables for X-ray Crystallography, $3^{\text {rd }}$ series. Kluwer Academic Publishers, Dordrecht, Boston, London. Vol.A (1983), Vol.B (1993), Vol.C (1992), "Brief Teaching Edition of Volume A" (1985).
[2] http://www.ccp14.ac.uk/ ; http://www.iucr.org/sincris-top/logiciel/index.html
[3] P.P. Ewald, Fifty years of X-ray Diffraction, Reprinted in pdf format for the IUCr XVIII Congress, Glasgow, Scotland Copyright © 1962, 1999 International Union of Crystallography, Chester, UK.
[4] B.E. Warren, X-ray Diffraction, Addison-Wesley, Reading, MA, 1969.
[5] I.C. Noyan \& J.B. Cohen, Residual Stress, Springer-Verlag, New York, 1989.
[6] J.I. Langford, "Line Profiles and sample Microstructure", in Industrial Applications of X-ray Diffraction, edited by F.H. Chung and D.K. Smith, Marcel Dekker, New York, 2000.
[7] R.A.Young, The Rietveld method, Oxford University Press, Oxford, 1993.
[8] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, reading Ma, 1978.
[9] H.P. Klug \& L.E. Alexander, X-ray Diffraction procedures, Wiley, New York, 1974.
[10] Y.H. Dong and P. Scardi, J. Applied Crystallography 33 (2000) 184-189.
[11] TOPAS, Bruker AXS, 2000. http://www.bruker-axs.com
[12] International Centre for Diffraction Data, Newtown Square, PA, USA. http://www.icdd.com
[13] JADE 5+. MDI, Materials Data: http://www.materialsdata.com

