Diffraction from polycrystalline materials

Paolo Scardi

Department of Materials Engineering and Industrial Technologies University of Trento

Paolo.Scardi@unitn.it

1st African School Dakar, Senegal, 12-17, December 2005

CONTENTS

PART I

- From single-crystal to powder diffraction
- Intensity scattered from a powder sample

PART II

- Features and aberrations of the powder geometry
- Structure factor and intensity calculations

1st African School Dakar, Senegal, 12-17, December 2005

Diffraction and Reciprocal lattice

A vector drawn from the origin of the reciprocal lattice to the point (hk), where h, k, I are the Miller indices (integer numbers) is given by:

 $\underline{d}_{hkl}^* = h\underline{a}^* + k\underline{b}^* + l\underline{c}^*$

where \underline{a}^* , \underline{b}^* , \underline{c}^* are the reciprocal space vectors

The vector modulus is the inverse of the interplanar distance for the planes with indices (*hkl*):

$$d_{hkl}^* = \left| \underline{d}_{hkl}^* \right| = \frac{1}{d_{hkl}}$$

1st African School Dakar, Senegal, 12-17, December 2005

Diffraction and Reciprocal lattice

Versors \underline{s}_0 and \underline{s} identify, respectively the incident and scattered beam

1st African School Dakar, Senegal, 12-17, December 2005

P. Scardi – Diffraction from polycrystalline materials

4

For a *perfect (infinite) crystal*

The *reciprocal lattice* is made of (infinitely small) points representing sets of planes of Miller indices *hkl*

5

1st African School Dakar, Senegal, 12-17, December 2005

DIFFRACTION AND RECIPROCAL SPACE

For a *perfect (infinite) crystal* the **peak width** is determined by the instrumental resolution only:

6

1st African School Dakar, Senegal, 12-17, December 2005

For a *finite crystal (L<1mm)*

Reciprocal lattice points have finite extension. The shape is related to the crystal shape .

7

1st African School Dakar, Senegal, 12-17, December 2005

Dakar, Senegal, 12-17, December 2005

RECIPROCAL LATTICE: DIFFRACTION CONDITIONS

1st African School Dakar, Senegal, 12-17, December 2005

RECIPROCAL LATTICE: DIFFRACTION CONDITION\$

Diffraction conditions occur when the tip of the scattering vector d^* falls on a point of the reciprocal space.

The condition is fulfilled by all points on the *Ewald sphere*, a sphere of radius $1/\lambda$, tangent to the origin and to the $2/\lambda$ sphere.

In a powder diffraction measurement, the Ewald sphere can be thought as *rotating* inside the $2/\lambda$ sphere.

RECIPROCAL LATTICE: DIFFRACTION CONDITIONS

1st African School Dakar, Senegal, 12-17, December 2005

RECIPROCAL LATTICE: POWDER DIFFRACTION

Diffraction takes places whenever the scattering vector crosses a reciprocal space point (*hkl*):

 $\frac{\underline{s}-\underline{s}_0}{\underline{l}}=\underline{d}_{hkl}^*$

In a powder diffraction measurement, the sphere of radius d^* progressively 'swells' (increasing 2 θ) and sweeps the reciprocal space within the limiting sphere:

All reciprocal space points on the PD sphere are in diffraction condition (\rightarrow multiplicity).

12

RECIPROCAL LATTICE: MULTIPLICITY

In a powder (polycrystalline material) measurement, several points can be in diffraction condition *simultaneously*, i.e., for the same 2θ .

This property is expressed by the concept of *multeplicity* of a diffraction peak, i.e., the number of equivalent planes.

In cubic structures:

Miller indices	hkl	hhk	Okl	Okk	hhh	001
Multeplicity	48	24	24	12	8	6

13

1st African School Dakar, Senegal, 12-17, December 2005

CONTENTS

PART I

- From single-crystal to powder diffraction
- Intensity scattered from a powder sample

PART II

- Features and aberrations of the powder geometry
- Structure factor and intensity calculations

1st African School Dakar, Senegal, 12-17, December 2005

The concept of 'Powder'

An ideal powder is a polycrystalline sample (a true powder or a bulk specimen) such that for every possible orientation a sufficiently high number of grains (\rightarrow grain statistics) has atomic planes in Bragg condition (*random orientation*).

If preferred orientations (*texture*) are present, suitable models are necessary to account for the 'non-ideal' conditions.

Dakar, Senegal, 12-17, December 2005

Integrated intensity

Intrinsic features of the sample, instrument and measurement geometry cause a dispersion of the scattered intensity across a finite angular range (*a peak*). The range (width) changes with 2*q*.

The diffracted signal is better represented by the area of the diffraction peak (*integrated intensity*) than by maximum intensity.

1st African School Dakar, Senegal, 12-17, December 2005

The *integrated intensity* of a powder diffraction peak is given by:

1st African School Dakar, Senegal, 12-17, December 2005

P. Scardi – Diffraction from polycrystalline materials

17

INTEGRATED INTENSITY

A diffraction measurement basically consists in a cross section through one or more reciprocal space (RS) points.

The measured intensity depends on:

a) The way RS points are crossed;

b) The sampling in RS (considering measurements are in 2q space);

c) The fraction of diffracted signal collected by the detector.

THE LORENTZ FACTOR

Points a), b), c) give the so-called *Lorentz factor*, which depends on the diffraction geometry. As for the way an *hkl* point in RS is "*crossed*" during a measurement, the effect is:

$$\propto 1/\sin(2\boldsymbol{q})$$

The fraction of crystalline domains whose planes are in diffraction condition changes with the 2q angle. This fraction is proportional to the ratio between a stripe of width rDq and the total surface of the sphere.

THE LORENTZ FACTOR

Finally, as shown in the figure below, during a traditional powder diffraction measurement, the X-ray detector spans just a portion (h) of the base circle of the diffraction cone.

This gives a further trigonometric term, proportional to the integrated intensity: $\propto 1/\sin(2\boldsymbol{q})$

Putting together the trigonometric terms described so far, we obtain the *Lorentz Factor* for the powder geometry:

1st African School Dakar, Senegal, 12-17, December 2005

An additional trigonometric term is in the *Polarization Factor* :

$$PF = \left[1 + \cos^2(2\boldsymbol{q})\right]/2$$

1st African School Dakar, Senegal, 12-17, December 2005

The Lorentz and Polarization factors can be combined in a single trigonometric term: the *Lorentz-Polarization* factor:

ABSORPTION

One of the main advantages of the traditional powder diffraction geometry (Bragg-Brentano) is that it does not require q-dependent correction terms for the absorption of the X-rays. Consider a beam with cross section A_0 and intensity I_0 impinging with an angle q_1 . A small volume dV_1 , with thickness dx and surface $A_0/\sin(q_1)$ diffracts at the angle q_2 .

$$dI = I_0 e^{-mx(1/\sin q_1 + 1/\sin q_2)} dV = \frac{I_0 A_0}{\sin q_1} e^{-mx(1/\sin q_1 + 1/\sin q_2)} dx$$

1st African School Dakar, Senegal, 12-17, December 2005

ABSORPTION

$$dI = I_0 e^{-mx(1/\sin q_1 + 1/\sin q_2)} dV = \frac{I_0 A_0}{\sin q_1} e^{-mx(1/\sin q_1 + 1/\sin q_2)} dx$$

In the traditional powder geometry: $\boldsymbol{q}_1 = \boldsymbol{q}_2 = \boldsymbol{q}$

1st African School Dakar, Senegal, 12-17, December 2005

If terms for absorption (m), cell volume (v_a) , goniometer radius (r)and wavelenght (I) are written explicitly, $k' = k I^3 / mr v_a^2$

1st African School Dakar, Senegal, 12-17, December 2005

If the secondary circle of a crystal monochromator (analyzer) is present at $q_{m'}$ the polarization factor must be written as:

1st African School Dakar, Senegal, 12-17, December 2005

CONTENTS

PART I

- From single-crystal to powder diffraction
- Intensity scattered from a powder sample

PART II

- Features and aberrations of the powder geometry
- Structure factor and intensity calculations

1st African School Dakar, Senegal, 12-17, December 2005

BRAGG-BRENTANO GEOMETRY

1st African School Dakar, Senegal, 12-17, December 2005

The instrumental profile results from a *convolution* of several effects:

$$g = g_I \otimes g_{II} \otimes g_{III} \otimes g_{IV} \otimes \dots$$

The main contributions are those due to:

- Emission profile
- Flat sample
- Axial Divergence
- Sample transparency
- Receiving slit

.

1st African School Dakar, Senegal, 12-17, December 2005

DIFFRACTION PROFILE IN THE POWDER GEOMETRY

H.P. Klug & L.E. Alexander, X-ray Diffraction procedures, Wiley, New York, 1974

1st African School Dakar, Senegal, 12-17, December 2005

Emission profile: the Ka_1/Ka_2 doublet.

Line width (**G**), asymmetry (**k**) and emission energy (**E**) for the K α components of Cu, Cr, Fe, Co. Note that two average K α components are most frequently used instead of the four in the previous figure

	Κα1			Κα ₂			
	E (keV)	Γ (eV)	к	E (keV)	Γ (eV)	к	
Cu	8.048	2.56	1.12	8.028	4.05	1.10	
Cr	5.415	2.16	1.38	5.406	2.75	1.18	
Fe	6.404	2.35	1.43	6.391	2.84	1.25	
Со	6.930	2.87	1.32	6.915	3.59	1.25	

EMISSION PROFILE

Cu K α emission spectrum with two components (a). FWHM of the emission spectrum (K α_1 component) as a function of the diffraction angle, 2 θ) (b).

1st African School Dakar, Senegal, 12-17, December 2005

In addition to peak position, maximum and integrated intensity, a useful quantity is the *integral breadth* (**b**), defined as the ratio between peak area and maximum intensity.

Relation between integral breadth in reciprocal space and 2q space

$$\boldsymbol{b}\left(2\boldsymbol{q}\right) = \boldsymbol{b}\left(d^*\right) \cdot \frac{\boldsymbol{l}}{\cos \boldsymbol{q}}$$

1st African School Dakar, Senegal, 12-17, December 2005

ANALYTICAL PROFILE FITTING

Nowadays, the most popular data processing programs make use of *analytical profile fitting*. The basic algorithm (even though not the only one, probably not always the best) adopts a non-linear least squares (NLLS) minimization engine.

The quantity to minimize is:

$$S_{y}^{2} = \sum w_{i}^{2} \left[y_{i,o} - y_{i,c} \right]^{2}$$

where $y_{i,o}$ and $y_{i,c}$ are respectively the observed and calcualted intensities, whereas the weight is $w_i = 1/\sqrt{y_{i,o}}$.

Calculated (model) intensities, $y_{i,c'}$ are typically described by bell-shaped analytical curves, like:

Gaussian, Lorentzian, pseudo-Voigt, Voigt or Person VII functions.

Analitycal profile functions commonly used in peak profile fitting: $x = 2\boldsymbol{q} - 2\boldsymbol{q}_0 \text{ or } d^* - d^*_{hkl}$

$$G(x, \boldsymbol{b}_{G}) = I_{o} \cdot \exp\left(-\frac{\boldsymbol{p} x^{2}}{\boldsymbol{b}_{G}^{2}}\right) \qquad C(x, \boldsymbol{b}_{C}) = \frac{I_{o}}{1 + \frac{\boldsymbol{p}^{2} x^{2}}{\boldsymbol{b}_{C}^{2}}}$$
$$pV(x) = I_{o}\left[(1-\boldsymbol{h}) \cdot G(x, \boldsymbol{b}_{G}) + \boldsymbol{h} \cdot C(x, \boldsymbol{b}_{C})\right] =$$
$$= I_{o}\left[(1-\boldsymbol{h}) \cdot \exp\left(-\frac{\boldsymbol{p} x^{2}}{\boldsymbol{b}_{G}^{2}}\right) + \boldsymbol{h} \cdot \frac{1}{1 + \frac{\boldsymbol{p}^{2} x^{2}}{\boldsymbol{b}_{C}^{2}}}\right]$$

1st African School Dakar, Senegal, 12-17, December 2005

Useful properties of the \boldsymbol{pV} function are, e.g., that the IB is simply given by:

$$\boldsymbol{b}_{pV} = (1 - \boldsymbol{h}) \boldsymbol{b}_{G} + \boldsymbol{h} \boldsymbol{b}_{C}$$

if G and C components of the pV have the same width (HWHM). It is also possible to use 'Split pV', with right (R) and left (L) HWHMs:

$$pV(x) = I_o \cdot \left[(1-h) \cdot \exp\left(-\ln(2)\frac{x^2}{w_{L,R}^2}\right) + h \cdot \frac{1}{1+\frac{x^2}{w_{L,R}^2}} \right]$$

1st African School Dakar, Senegal, 12-17, December 2005

ANALYTICAL PROFILE FITTING

Fit quality is typically expressed by suitable statistical quality indices:

$$S_{y}^{2} = \sum_{i} w_{i}^{2} \left[y_{i,o} - y_{i,c} \right]^{2}$$

$$R_{wp} = \left\{ S_{y}^{2} / \sum_{i} w_{i}^{2} y_{i,o}^{2} \right\}^{1/2}$$
$$R_{exp} = \left[\left(N - P \right) / \sum_{i} w_{i} y_{i,o}^{2} \right]^{1/2}$$

$$GoF = R_{wp}/R_{exp}$$

where N is the number of data points, P is the number of fit parameters.

1st African School Dakar, Senegal, 12-17, December 2005

ANALYTICAL PROFILE FITTING

H.P. Klug & L.E. Alexander, X-ray Diffraction procedures, Wiley, New York, 1974

The observed profile (*h*) is a convolution of the *instrumental profle* (*g*) with the '*true*' *diffraction profile* due to microstructure and lattice defects of the studied sample (f)

$$h(\mathbf{h}) = f(\mathbf{h} - \mathbf{e}) \otimes g(\mathbf{e})$$

f profile \rightarrow small crystalline domain size, dislocations, faulting, etc.

1st African School Dakar, Senegal, 12-17, December 2005

In many cases f, g, h profiles can be described by Voigtian functions. When using pseudoVoigt functions ($x = 2\mathbf{q} - 2\mathbf{q}_0 \text{ or } d^* - d^*_{hkl}$):

$$pV(x) = I_o \left[(1-h) \cdot \exp\left(-\frac{px^2}{b^2}\right) + h \cdot \frac{1}{1+\frac{p^2x^2}{b^2}} \right]$$

For the **g** (instrumental) profile, mixing parameter (**h**) and width (**b**) can be parameterized as:

$$FWHM = \left(U\tan^2 \boldsymbol{q} + V\tan \boldsymbol{q} + W\right)^{1/2}$$
$$\boldsymbol{h} = a + b \cdot \boldsymbol{q} + c\boldsymbol{q}^2$$

1st African School Dakar, Senegal, 12-17, December 2005

ANALYTICAL PROFILE FITTING

Dakar, Senegal, 12-17, December 2005

ANALYTICAL PROFILE FITTING

If both **f** and **g** profile components are assumed to be Voigtian, the **h** profile is also Voigtian and is given by:

$$\boldsymbol{b}_{hC} = \boldsymbol{b}_{gC} + \boldsymbol{b}_{fC}$$
$$\boldsymbol{b}_{hG} = \sqrt{\boldsymbol{b}_{gG}^2 + \boldsymbol{b}_{fG}^2}$$

If **g** is known, fitting the experimental **h** profile allows one to obtain the **f** profile:

$$\boldsymbol{b}_{f} = (1 - \boldsymbol{h}) \boldsymbol{b}_{fG} + \boldsymbol{h} \boldsymbol{b}_{fC}$$

The integral breadth of the 'true' profile (*f*) can be used, e.g., with *L*=, the Scherrer formula:

$$\mathbf{b}_{f} \propto \frac{\mathbf{l}}{L \cdot \cos \mathbf{q}}$$

1st African School Dakar, Senegal, 12-17, December 2005

1st African School Dakar, Senegal, 12-17, December 2005

P. Scardi – Diffraction from polycrystalline materials

45

Analytical expressions of peak position aberrations.

	Centroid aberration	Parameters				
Sample displacement	$\frac{-2d\cos \boldsymbol{q}}{R}$	d - sample displacementR - goniometer radius				
Flat specimen	$-\frac{1}{6}\boldsymbol{a}^2\cot\boldsymbol{q}$	α - divergence slit				
Sample transparency	$\frac{-\sin(2\boldsymbol{q})}{2\boldsymbol{m}R}$	μ - linear absorption coeff.R - goniometer radius				
Axial Divergence	$-\frac{1}{6}\boldsymbol{d}^{2}\cot(2\boldsymbol{q})$	δ - Soller slit(half aperture)				
Refraction	$2(1-r)\tan q$	R - index of refraction				
Polarization	$\frac{2W\tan \boldsymbol{q}}{d^2}$	W - (°) d - interplanar spacing				
Lorentz Factor and Dispersion	$\frac{3W\tan^3\boldsymbol{q}}{\boldsymbol{l}^2}$	W - (°) λ - wavelength				

(°) As an estimate of W, Wilson suggests to use 1/3 of the square of the doublet separation.

1st African School Dakar, Senegal, 12-17, December 2005

Shift of sample position with respect to the goniometer axis

1st African School Dakar, Senegal, 12-17, December 2005

Sample transparency

Dakar, Senegal, 12-17, December 2005

1st African School Dakar, Senegal, 12-17, December 2005

Errors in peak positions: NIST SRM 1976 alumina. D.S. ½° or 1°. Other parameters are the same (radius 250mm, Soller 2°, R.S. 0.15mm).

Dakar, Senegal, 12-17, December 2005

Like many natural phenomena related to the generation of random events with a finite time average, X-ray emission follows the POISSON statistics

$$p(n) = \frac{N^n}{n!} e^{-N}$$

where *n* is a positive integer. *N* is the *mean value*:

$$\overline{n} = \sum_{n=0}^{\infty} np(n) = \sum_{n=0}^{\infty} N \frac{N^{n-1}}{(n-1)!} e^{-N} = N e^{-N} e^{N} = N$$

If N is the mean value of the counts collected for a certain time, the **standard deviation** s_n is obtained from:

$$\boldsymbol{s}_{n}^{2} = \overline{\left(n-N\right)^{2}} = \overline{\left(n^{2}+N^{2}-2nN\right)} = N^{2}+N-N^{2}=N$$

1st African School Dakar, Senegal, 12-17, December 2005

COUNTING STATISTICS

The *standard deviation* is given by

$$\boldsymbol{s}_n = \sqrt{N}$$

And the *relative standard deviation* is:

1st African School Dakar, Senegal, 12-17, December 2005

COUNTING STATISTICS

When a background is present with N_B counts, if $N_T = N_P + N_B$ is the total counts (N_P is the net peak area, with background subtracted), the relative standard deviation (in percentage) is:

$$\boldsymbol{s}_{P} = \frac{\sqrt{N_{T} + N_{B}}}{N_{T} - N_{B}} x100$$

The signal-to-noise ratio, R, is defined as:

 $R = N_T / N_B$

$$\boldsymbol{s}_{P} = \frac{1}{R-1} \sqrt{\frac{R(R+1)}{N_{T}}} x100$$

1st African School Dakar, Senegal, 12-17, December 2005

COUNTING STATISTICS

54

An implicit assumption of all the above reasoning is that the powder sample is homogeneous, even on a microscopic level. This is just an approximation, because samples are made of finite size grains.

If grains (actually, crystalline domains) are not sufficiently small, the concept of powder tends to lose its meaning, in the sense that it is not true anymore that for any direction there is a sufficiently large number of domains with atomic planes in Bragg conditions.

Depending on the absorption coefficient, the critical threshold for the domain size changes. In particular, the problem of having sufficiently small grains is critical for highly absorbing materials.

1st African School Dakar, Senegal, 12-17, December 2005

P. Scardi – Diffraction from polycrystalline materials

56

The figure below shows the intensity collected for the same reflection of quartz for different specimens of the same powder sample (from 1 to 10), prepared by selecting different granulometric fractions. The smallest deviations are obtained below 5 mm.

1st African School Dakar, Senegal, 12-17, December 2005

The data shown before also reveal a further effect. For the large grains, the decrease in intensity caused by absorption is increased by the fact that the fraction of diffracted intensity is also larger for these grains. Consequently, the signal is lower than that given by the same volume made of smaller (less absorbing) grains.

Mean values and standard deviations for the data of previous Figure

	15-50 μm	5-50 µm	5-15 μm	<5 µm
Mean	8512	9207	11267	11293
Standard deviation	2081 (24%)	1163 (13%)	293 (2.6%)	157 (1.4%)

This effect (extintion), together with *microabsorption* is one of the factors limiting the reliability of powder diffraction measurements. It is a particularly critical issue in *quantitative phase analysis*.

REFERENCES

References

- [1] G. Hölzer, M. Fritsch, M. Deutsch, J. Härtwig & E. Förster, Phys. Rev. A 56 (1997) 4554-4568.
- [2] S.I. Salem & P.L. Lee, At. Data Nucl. Data Tables 18 (1976) 234-240.
- [3] NIST National Institute of Standard and Technology, Gaithersburg, MA, USA; http://www.nist.gov
- [4] J. Bergmann, R. Kleeberg, A. Haase & B. Breidenstein, Mat. Sci. Forum 347-349 (2000) 303-308.
- [5] TOPAS, Bruker AXS, 2000. http://www.bruker-axs.com
- [6] Y.H. Dong and P. Scardi, J. Applied Crystallography 33 (2000) 184-189.
- [7] R.W. Cheary & A.A. Coelho, J. Applied Crystallography 25 (1992) 109-121; R.W. Cheary & A.A. Coelho, Powder Diffraction 13 (1998) 100-107.
- [8] H.P. Klug & L.E. Alexander, *X-ray Diffraction procedures*, Wiley, New York, 1974.
- [9] A.J.C. Wilson, *Mathematical Theory of Xray Powder Diffractometry*, Philips Technical Library, Eindhoven, The Netherlands, 1963.
- [10] G.K. Wertheim, M.A. Butler, K.W. West & D.N.E. Buchanan, Rev. Sci. Instrum. 45 (1974) 1369-1371.
- [11] R.A.Young, The Rietveld method, Oxford University Press, Oxford, 1993.
- [12] P. Scardi & M. Leoni, J. Applied Crystallography 32 (1999) 671-682.
- [13] I.J. Langford, J. Applied Crystallography 11 (1978) 10-14.
- [14] M. Leoni, P. Scardi, I.J. Langford, Powder Diffraction 13 (1998) 210-215.
- [15] I.J. Langford, in *Accuracy in Powder Diffraction* II, NIST Special Publication 846, edited by E. Prince & J.K. Stalick, pp. 110-126. Washington: USG Printing Office, 1992.
- [16] M. Ahtee, L. Unonius, M. Nurmela, P. Suortti, J. Applied Crystallography 17 (1984) 352-258.
- [17] L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Applied Crystallography 32 (1999) 36-50.

1st African School Dakar, Senegal, 12-17, December 2005

CONTENTS

PART I

- From single-crystal to powder diffraction
- Intensity scattered from a powder sample

PART II

- Features and aberrations of the powder geometry
- Structure factor and intensity calculations

1st African School Dakar, Senegal, 12-17, December 2005

Primitive cell (P) (Z=1) with one atomic species only

$$F = f e^{2pi(0\cdot h+0\cdot k+0\cdot l)} = f$$

$$I \propto \left|F\right|^2 = f^2$$

The structure factor is the same for all (*hkl*) refections

1st African School Dakar, Senegal, 12-17, December 2005

Body centred lattice (1) (Z=2) with one atomic species only in (0,0,0) and $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$

$$F = f e^{2pi(0)} + f e^{2pi(h/2 + k/2 + l/2)} = f \left[1 + e^{pi(h+k+l)} \right] = \begin{cases} 0 & h+k+l & odd \\ 2f & h+k+l & even \end{cases}$$

The intensity is proportional to $4f^2$ for reflections with even sum of indices, and it is *zero* for those with odd sum of indices

1st African School Dakar, Senegal, 12-17, December 2005

Face centred lattice (*F*) (Z=4) with one atomic species only in (0,0,0), $(0,\frac{1}{2},\frac{1}{2})$, $(\frac{1}{2},0,\frac{1}{2})$ and $(\frac{1}{2},\frac{1}{2},0)$

$$F = fe^{2pi(0)} + fe^{2pi(0+k/2+l/2)} + fe^{2pi(h/2+0+l/2)} + fe^{2pi(h/2+k/2+0)}$$
$$= f\left[1 + e^{pi(k+l)} + e^{pi(h+l)} + e^{pi(h+k)}\right] = \begin{cases} 0 & h, k, l & mixed \\ 4f & h, k, l & unmixed \end{cases}$$

The intensity of proportional to $16f^2$ for reflections with mixed indices and it is *zero* for those with unmixed indices

1st African School Dakar, Senegal, 12-17, December 2005

Р	Ι	F
(100)	-	-
(110)	(110)	-
(111)	-	(111)
(200)	(200)	(200)
(210)	-	-
(211)	(211)	-
(220)	(220)	(220)
(300)/(221)	-	-
(310)	(310)	-
(311)	-	(311)
(222)	(222	(222)
(320)	-	-
(321)	(321)	-
(400)	(400)	(400)

The structure factor is independent of *shape* and *size* of the unit cell.

Rules shown in the previous examples are then valid for any *P*, *I*, *or F* cells.

1st African School Dakar, Senegal, 12-17, December 2005

POWDER DIFFRACTION

EXAMPLE

Calculated integrated intensity for the reflections of Fluorite

1st African School Dakar, Senegal, 12-17, December 2005

P. Scardi – Diffraction from polycrystalline materials

65

Fluorite (CaF₂): *fcc* (Z=4) unit cell. Cations (Ca⁺², r=0.99 Å) in the origin and positions equivalent by *fcc* Translations. Anions (F⁻¹, R=1.33 Å) in ($\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$), ($\frac{1}{4}$, $\frac{1}{4}$, $\frac{3}{4}$) and positions equivalent by *fcc* Translations.

 $\begin{array}{l} {\rm Ca}^{+2} \ (0,0,0) + fcc \\ {\rm F}^{-1} \ \ (1/4,1/4,1/4), \ (1/4,1/4,3/4) + fcc. \end{array}$

$$F = 4 \left[f_{Ca} + f_{F} e^{\frac{ip}{2}(h+k+l)} + f_{F} e^{\frac{ip}{2}(h+k+3l)} \right] = 4 \left[f_{Ca} + f_{F} \left(e^{\frac{ip}{2}(h+k+l)} + e^{\frac{ip}{2}(h+k-l)} \right) \right] = 4 \left[f_{Ca} + 2 f_{F} e^{\frac{ip}{2}(h+k)} \cos\left(\frac{pl}{2}\right) \right]$$

$$|F|^{2} = 16\left\{f_{Ca}^{2} + 4f_{F}^{2}\cos^{2}\left(\frac{\mathbf{p}l}{2}\right) + 4f_{Ca}f_{F}\left[e^{\frac{i\mathbf{p}}{2}(h+k)} + e^{-\frac{i\mathbf{p}}{2}(h+k)}\right]\cos\left(\frac{\mathbf{p}l}{2}\right]\right\} = 16\left\{f_{Ca}^{2} + 4f_{F}^{2}\cos^{2}\left(\frac{\mathbf{p}l}{2}\right) + 4f_{Ca}f_{F}\cos\left[\frac{\mathbf{p}}{2}(h+k)\right]\cos\left(\frac{\mathbf{p}l}{2}\right)\right\}$$

1st African School Dakar, Senegal, 12-17, December 2005

$$\left|F\right|^{2} = 16\left\{f_{Ca}^{2} + 4f_{F}^{2}\cos^{2}\left(\frac{\mathbf{p}l}{2}\right) + 4f_{Ca}f_{F}\cos\left[\frac{\mathbf{p}}{2}\left(h+k\right)\right]\cos\left(\frac{\mathbf{p}l}{2}\right)\right\}$$

The expression simplifies consideraning that h,k,l are integers:

$$|F|_{A}^{2} = 16f_{Ca}^{2} \qquad l \text{ odd}$$

$$|F|_{B}^{2} = 16(f_{Ca} - 2f_{F})^{2} \qquad (h+k) \text{ or } l \text{ odd multiple of } 2$$

$$|F|_{C}^{2} = 16(f_{Ca} + 2f_{F})^{2} \qquad (h+k) \text{ and } l, \text{ both odd or both even multiple of } 2$$

(111)	(200)	(220)	(311)	(222)	(400)	(331)	(420)	(422)	(333)	(511)	(440)	(531)	(600)
$\left F\right _{A}^{2}$	$\left F\right _{B}^{2}$	$\left F\right _{C}^{2}$	$\left F\right _{A}^{2}$	$\left F\right _{B}^{2}$	$\left F\right _{C}^{2}$	$\left F\right _{A}^{2}$	$\left F\right _{B}^{2}$	$\left F\right _{C}^{2}$	$F\Big _A^2$	$F\Big _A^2$	$F\Big _{C}^{2}$	$F\Big _A^2$	$F\Big _{B}^{2}$

$$|F|_{A}^{2} = 16f_{Ca}^{2} \qquad l \text{ odd}$$

$$|F|_{B}^{2} = 16(f_{Ca} - 2f_{F})^{2} \qquad (h+k) \text{ or } l \text{ odd multiple of } 2$$

$$|F|_{C}^{2} = 16(f_{Ca} + 2f_{F})^{2} \qquad (h+k) \text{ and } l, \text{ both odd or both even multiple of } 2$$

Atomic scattering factor (*f*):

Dispersion corrections:

	Ca	F
$\Delta f'$	0.3	0.0
$\Delta f''$	1.4	0.1

→ (f+Df')+iDf"

Debye-Waller factors:

$$B(Ca) = 0.47 \text{ Å}^2, B(F) = 0.67 \text{ Å}^2$$

1st African School Dakar, Senegal, 12-17, December 2005

$$|F|_{A}^{2} = 16f_{Ca}^{2} \qquad l \text{ odd} \qquad (f+Df')+iDf'' |F|_{B}^{2} = 16(f_{Ca}-2f_{F})^{2} \quad (h+k) \text{ or } l \text{ odd multiple of } 2 |F|_{C}^{2} = 16(f_{Ca}+2f_{F})^{2} \quad (h+k) \text{ and } l, \text{ both odd or both even multiple of } 2 |F_{T}|_{A}^{2} = 16f_{Ca}^{2}e^{-2M_{Ca}} = 16\left[\left(f_{0,Ca}+\Delta f'_{Ca}\right)^{2}+\left(\Delta f''_{Ca}\right)^{2}\right]e^{-2M_{Ca}} |F_{T}|_{B}^{2} = 16\left(f_{Ca}e^{-M_{Ca}}-2f_{F}e^{-M_{F}}\right)^{2} = = 16\left\{\left[\left(f_{0,Ca}+\Delta f'_{Ca}\right)e^{-M_{Ca}}-2\left(f_{0,F}+\Delta f'_{F}\right)e^{-M_{F}}\right]^{2}+\left(\Delta f''_{Ca}e^{-M_{Ca}}-2\Delta f''_{F}e^{-M_{F}}\right)^{2}\right\} |F_{T}|_{C}^{2} = 16\left(f_{Ca}e^{-M_{Ca}}+2f_{F}e^{-M_{F}}\right)^{2} = = 16\left\{\left[\left(f_{0,Ca}+\Delta f'_{Ca}\right)e^{-M_{Ca}}+2\left(f_{0,F}+\Delta f'_{F}\right)e^{-M_{F}}\right]^{2}+\left(\Delta f''_{Ca}e^{-M_{Ca}}+2\Delta f''_{F}e^{-M_{F}}\right)^{2}\right\}$$

1st African School Dakar, Senegal, 12-17, December 2005

 $|F|_{A}^{2} = 16f_{Ca}^{2}$

FLUORI TE POWDER PATTERN

6	2	
6		

 $|F|_{C}^{2} = 16(f_{Ca} + 2f_{F})^{2}$ (h+k) and *l*, both odd or both even multiple of 2

hkl	2 q	sin q/1	LP	р	$e^{-B(Ca)\frac{\sin^2 q}{l^2}}$	$e^{-B(F)\frac{\sin^2 q}{l^2}}$	$e^{-\overline{B}\frac{\sin^2 q}{l^2}}$	$f_{0,Ca^{+2}}$	$f_{\scriptscriptstyle 0,F^{^{-1}}}$	$\left F_{T}\right _{A}^{2}$	$F_T\Big _B^2$	$F_T\Big _C^2$	Int ([§])	Int' ([#])
111	28.27	0.1585	15.00	8	0.988	0.983	0.985	15.53	7.99	3947			86.3	86.3
200	32.76	0.1830	10.94	6	0.984	0.978	0.979	14.87	7.49		24		0.3	0.3
220	47.00	0.2588	4.94	12	0.969	0.956	0.959	12.77	5.93			9259	100.0	100.0
311	55.76	0.3035	3.36	24	0.958	0.940	0.944	11.61	5.12	2109			31.0	30.4
222	58.48	0.3171	3.02	8	0.954	0.935	0.940	11.28	4.90		79		0.3	0.3
400	68.67	0.3661	2.14	6	0.939	0.914	0.920	10.22	4.18			4950	11.6	11.5
331	75.85	0.3989	1.77	24	0.928	0.899	0.906	9.62	3.79	1382			10.7	10.3
420	78.18	0.4093	1.68	24	0.924	0.894	0.901	9.45	3.68		114		0.8	0.7
422	87.37	0.4483	1.45	24	0.910	0.874	0.883	8.87	3.31			3228	20.5	20.1
333	94.22	0.4756	1.38	8	0.899	0.859	0.869	8.52	3.07	1032			2.1	1.9
511				24						1032			6.2	5.8
440	105.8	0.5177	1.39	12	0.882	0.836	0.847	8.03	2.71		0	2288	7.0	6.8
531	113.06	0.5415	1.49	48	0.871	0.822	0.834	7.76	2.50	812			10.6	9.8
600	115.57	0.5492	1.54	6	0.868	0.817	0.829	7.67	2.44	0	155		0.3	0.2

 $a_0 = 5.463 \text{\AA}$ $q_m = 13.28^{\circ}$ $M = B(\sin q/l)^2$ $l = 1.540598 \text{\AA}$

l odd

 $|F|_{R}^{2} = 16(f_{Ca} - 2f_{F})^{2}$ (*h*+*k*) or *l* odd multiple of 2

1st African School Dakar, Senegal, 12-17, December 2005

Experimental pattern of fluorite powder: profile fitting results

(hkl)	2 q	$d_{_{hkl}}$	I _{max}	Area	Int	$HWHM_{f}$ h	f	$HWHM_{h}$	ı
111	28.267	3.1546	1676	318.5	83.66	0.0619	0.41	0.073	0.47
-			(25)		<u> </u>	(0.0015)	(0.02)	0.044	
200	32.754	2.7320	12	1.7	0.44	0.051	0.00	0.061	0.15
			(3)			(0.016)	(0.15)		
220	47.000	1.9318	1688	379.9	100	0.0528	1.00	0.074	0.91
			(21)			(0.0013)	(0.04)		
311	55.754	1.6474	453	124.2	32.68	0.066	1.00	0.089	0.94
			(13)			(0.006)	(0.13)		
222	58.467	1.5773	10	1.5	0.41	0.041	0.23	0.058	0.47
			(2)			(0.024)	(0.85)		
400	68.654	1.3660	167	48.6	12.78	0.067	1.00	0.094	0.94
			(7)			(0.009)	(0.21)		
331	75.833	1.2535	117	42.7	11.23	0.088	1.00	0.118	0.96
			(6)			(0.013)	(0.22)		
420	78.171	1.2218	14	4.6	1.22	0.077	1.00	0.108	0.95
			(2)			(0.045)	(0.94)		
422	87.364	1.1153	221	83.6	22.01	0.086	1.00	0.122	0.97
			(7)			(0.010)	(0.16)		
333	94.201	1.0515	21(1)	8.5	2.24	0.089	1.00	0.129	0.97
511			64(14)	25.6	6.73	(0.017)	(0.29)		
440	105.784	0.9659	50	28.0	7.37	0.131	1.00	0.179	0.99
			(3)			(0.026)	(0.31)		
531	113.033	0.9236	79	44.3	11.65	0.125	1.00	0.179	0.99
			(4)			(0.020)	(0.26)		
600	115.532	0.9107	7	5.4	1.42	0.19	1.00	0.251	0.99
			(2)			(0.11)	(0.93)		

1st African School Dakar, Senegal, 12-17, December 2005

Comparison between calculated and measured integrated intensities:

		Calculated	Experimental
hkl	2 q	Integ. Int.	Integ. Int.
111	28.27	86.3	83.7
200	32.76	0.3	0.4
220	47.00	100.0	100.0
311	55.76	31.0	32.7
222	58.48	0.3	0.4
400	68.67	11.6	12.8
331	75.85	10.7	11.2
420	78.18	0.8	1.2
422	87.37	20.5	22.0
333	94 22	2.1	2.2
511	77.22	6.2	6.7
440	105.8	7.0	7.4
531	113.06	10.6	11.6
600	115.57	0.3	1.4

1st African School Dakar, Senegal, 12-17, December 2005

Counting statistics:

$$\boldsymbol{s}_{P} = \frac{\sqrt{N_{T} + N_{B}}}{N_{T} - N_{B}} x100$$

hkl	I_{rel}	$2\theta_{\text{start}}$	$2\theta_{end}$	N_{B}	$N_T = N_P + N_B$	\boldsymbol{S}_P
	(%)	(gr	adı)	(conteggi)	(conteggi)	(%)
111	83.66	26.75	29.65	177	9452	1.0
200	0.44	31.45	33.90	141	224	23.0
220	100	45.45	48.40	141	11037	1.0
311	32.68	53.90	57.45	154	3770	1.7
222	0.41	57.25	59.55	98	243	12.7
400	12.78	66.70	70.45	147	1612	2.9
331	11.23	73.40	78.10	177	1538	3.0
420	1.22	75.95	80.25	161	919	4.3
422	22.01	84.85	89.75	182	2679	2.1
333/511	2.24/6.73	91.55	96.70	194	1287	3.5
440	7.37	102.15	109.30	286	1243	4.1
531	11.65	109.35	116.55	306	1865	3.0
600	1.42	110.45	119.95	413	2014	3.1

1st African School Dakar, Senegal, 12-17, December 2005

Comparison between calculated and measured integrated intensities:

		Calculated	Experimental	\boldsymbol{S}_{P}
hkl	2 q	Integ. Int.	Integ. Int.	(%)
111	28.27	86.3	83.7	1.0
200	32.76	0.3	0.4	23.0
220	47.00	100.0	100.0	1.0
311	55.76	31.0	32.7	1.7
222	58.48	0.3	0.4	12.7
400	68.67	11.6	12.8	2.9
331	75.85	10.7	11.2	3.0
420	78.18	0.8	1.2	4.3
422	87.37	20.5	22.0	2.1
333	94 22	2.1	2.2	3.5
511	77,22	6.2	6.7	
440	105.8	7.0	7.4	4.1
531	113.06	10.6	11.6	3.0
600	115.57	0.3	1.4	3.1

77

1st African School Dakar, Senegal, 12-17, December 2005

1st African School Dakar, Senegal, 12-17, December 2005

REFERENCES

REFERENCES

- International Tables for X-ray Crystallography, 3rd series. <u>Kluwer Academic Publishers</u>, Dordrecht, Boston, London. Vol.A (1983), Vol.B (1993), Vol.C (1992), "Brief Teaching Edition of Volume A" (1985).
- [2] <u>http://www.ccp14.ac.uk/; http://www.iucr.org/sincris-top/logiciel/index.html</u>
- [3] P.P. Ewald, *Fifty years of X-ray Diffraction*, Reprinted in pdf format for the IUCr XVIII Congress, Glasgow, Scotland Copyright © 1962, 1999 International Union of Crystallography, Chester, UK.
- [4] B.E. Warren, X-ray Diffraction, Addison-Wesley, Reading, MA, 1969.
- [5] I.C. Noyan & J.B. Cohen, *Residual Stress*, Springer-Verlag, New York, 1989.
- [6] J.I. Langford, "Line Profiles and sample Microstructure", in *Industrial Applications of X-ray Diffraction*, edited by F.H. Chung and D.K. Smith, Marcel Dekker, New York, 2000.
- [7] R.A.Young, The Rietveld method, Oxford University Press, Oxford, 1993.
- [8] B.D. Cullity, *Elements of X-ray Diffraction*, Addison-Wesley, reading Ma, 1978.
- [9] H.P. Klug & L.E. Alexander, *X-ray Diffraction procedures*, Wiley, New York, 1974.
- [10] Y.H. Dong and P. Scardi, J. Applied Crystallography 33 (2000) 184-189.
- [11] TOPAS, Bruker AXS, 2000. http://www.bruker-axs.com
- [12] International Centre for Diffraction Data, Newtown Square, PA, USA. http://www.icdd.com
- [13] JADE 5+. MDI, Materials Data: http://www.materialsdata.com