Powder diffraction-based techniques

A ALA ALA

Matteo Leoni

Università di Trento – Facoltà di Ingegneria Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali via Mesiano, 77 – 38050 Trento (Italy)

E-mail: Matteo.Leoni@ing.unitn.it

Powder diffraction and the real world

Powder diffraction pattern

Information extracted from the pattern

Peak position

- Interplanar spacing (Bragg equation)
 - Crystalline cell
- Phase identification
 - Qualitative analysis
- Residual stress
- Peak intensity
 - Single phase material (structure factor)
 - Structural analysis/refinement (Rietveld method)
 - Multiphase material
 - Quantitative phase analysis (with/without standard)
 - Crystallographic texture
- Peak width/shape
 - Microstructural information
 - Size/distribution of domains
 - Linear/planar defects

Lattice and cell identification

Interplanar spacing

Fitting results

A table of profile parameters can be obtained e.g. through peak fitting

2Theta	d (Å)	Height	Area	FWHM
25.574	3.48029	5993.5	58566.4	0.1000
35.139	2.55179	18874.0	145082.7	0.0900
35.303	2.54026	374.2	3248.8	0.0900
37.767	2.38003	2469.4	20254.8	0.0900
41.666	2.16587	576.2	4915.4	0.0900
43.346	2.08573	8803.4	74545.1	0.0900
52.538	1.74040	3979.9	35662.6	0.0900
57.484	1.60186	13317.6	117690.5	0.0900
61.283	1.51134	2370.5	23440.4	0.1000
66.499	1.40489	2307.9	23039.4	0.1000
68.191	1.37410	2518.7	25172.9	0.1000
74.275	1.27587	237.7	2276.7	0.1000
76.846	1.23946	4965.6	42968.4	0.0900
77.209	1.23454	1549.5	15483.1	0.1000
80.676	1.18999	258.3	2231.7	0.0900
84.329	1.14751	229.7	2294.5	0.1000
86.470	1.12451	245.7	2211.5	0.0900
88.963	1.09933	1153.7	11452.0	0.1000
90.677	1.08296	596.0	6376.5	0.1100
91.155	1.07852	382.1	3784.7	0.1000
95.217	1.04296	880.7	8781.4	0.1000
101.039	0.99798	1374.2	13728.0	0.1000
110.951	0.93494	228.9	2514.3	0.1100
116.060	0.90800	392.1	4312.2	0.1100
116.560	0.90555	968.5	10037.9	0.1100

Indexing

Through indexing algorithms, lattice, cell and space group can be obtained

2Theta	d (Å)			Area
25 574	3.48029		$d = f(a, b, c, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{g}, (h, k, l))$	58566.4
35.139	2.55179			145082.7
35.303	2.54026			3248.8
37.767	2.38003			20254.8
41.666	2.16587		a	4915.4
43.346	2.08573	Ν	$d = \frac{u_0}{\sqrt{1 + u_0}}$ for cubics	74545.1
52.538	1.74040		$\sqrt{h^2 + k^2 + l^2}$	35662.6
57.484	1.60186			117690.5
61.283	1.51134			23440.4
66.499	1.40489		Bravais lattice	23039.4
68.191	1.37410			25172.9
74.275	1.27587			2276.7
76.846	1.23946			42968.4
77.209	1.23454		cell parameters	15483.1
80.676	1.18999			2231.7
84.329	1.14751			2294.5
86.470	1.12451			2211.5
88.963	1.09933			11452.0
90.677	1.08296			6376.5
91.155	1.07852			3784.7
95.217	1.04296		Space group	8781.4
101.039	0.99798		via check of systematic absences	13728.0
110.951	0.93494			2514.3
116.060	0.90800			4312.2
116.560	0.90555			10037.9

Qualitative phase analysis

Principle of operation

Phase identification is one of the first and most diffuse applications of powder diffraction (especially in industry), for research, production, quality control and diagnostics.

Each crystalline phase has its own pattern that can be used as a fingerprint.

We just need to find the fingerprint of known substances in the pattern to be analysed

Fitting results

A table of profile parameters can be obtained e.g. through peak fitting

2Theta	d (Å)	Height	Area	FWHM
25.574	3.48029	5993.5	58566.4	0.1000
35.139	2.55179	18874.0	145082.7	0.0900
35.303	2.54026	374.2	3248.8	0.0900
37.767	2.38003	2469.4	20254.8	0.0900
41.666	2.16587	576.2	4915.4	0.0900
43.346	2.08573	8803.4	74545.1	0.0900
52.538	1.74040	3979.9	35662.6	0.0900
57.484	1.60186	13317.6	117690.5	0.0900
61.283	1.51134	2370.5	23440.4	0.1000
66.499	1.40489	2307.9	23039.4	0.1000
68.191	1.37410	2518.7	25172.9	0.1000
74.275	1.27587	237.7	2276.7	0.1000
76.846	1.23946	4965.6	42968.4	0.0900
77.209	1.23454	1549.5	15483.1	0.1000
80.676	1.18999	258.3	2231.7	0.0900
84.329	1.14751	229.7	2294.5	0.1000
86.470	1.12451	245.7	2211.5	0.0900
88.963	1.09933	1153.7	11452.0	0.1000
90.677	1.08296	596.0	6376.5	0.1100
91.155	1.07852	382.1	3784.7	0.1000
95.217	1.04296	880.7	8781.4	0.1000
101.039	0.99798	1374.2	13728.0	0.1000
110.951	0.93494	228.9	2514.3	0.1100
116.060	0.90800	392.1	4312.2	0.1100
116.560	0.90555	968.5	10037.9	0.1100

Manual search

Manual matching of most intense lines

							3.	39 - 3.3	2 (±.02)		File No.	l/lc
i • i i	3.38, 3.33 _× 3.31, 3.38, 3.38,	8.58 _x 6.72 ₉ 6.40 _x 6.13 _x 5.93 ₂	3.04, 3.19, 6.10, 8.66, 5.19,	4.11 ₈ 8.097 3.855 3.209 3.771	3.18 ₈ 3.28 ₇ 2.77 ₅ 3.29 ₅ 3.65 ₁	1.69 ₇ 5.184 6.704 9.703 3.511	2.65 ₆ 3.10₄ 3.48₄ 4.57₃ 2.94₁	1.88₅ 4.30₄ 2.64₄ 3.46₃ 1.67₁	(Mg,Fe) ₂ Al ₄ Si ₅ O ₁₈ /Cordierite, ferroan C ₁₉ H ₁₉ N ₇ O ₆ C ₁₂ H ₉ Cl ₆ C ₁₁ H ₁₁ N ₅ ·HCl C ₄ H ₈ N ₂ O ₂		9- 472 29-1716 17-1054 28-1749 26-1863	0.20 3.30
•	3.37 _x 3.31 ₈ 3.30 _x 3.38 _x 3.35 _x	5.85 ₈ 5.73 _x 5.44 ₇ 5.30 _x 5.21 ₈	3.86 ₈ 3.43 ₇ 5.63 ₅ 3.49 _x 4.86 ₈	3.72 ₇ 3.59 ₆ 3.24 ₄ 5.90 ₅ 4.33 ₈	3.527 3.195 4.973 3.675 4.048	3.03 ₇ 4.36 ₄ 6.58 ₃ 3.26 ₅ 3.90 ₈	2.70 ₇ 4.19 ₃ 4.58 ₂ 3.18 ₅ 3.55 ₈	7.72 3.27 3.15 2.99 2.73	C ₆ H ₉ N ₃ O ₂ ·HCl C ₆ H ₃ NO ₂ (NH ₄),P ₂ O ₇ KH ₃ P ₂ O ₇ β-Č ₉ H ₁₁ NO ₂	n Naraz atan Naraz atan	5- 459 30-1845 20- 102 15- 509 22-1874	1.00
i * *	3. 40 x 3.30x 3.31x 3.39x 3.34,	5.01, 4.76, 4.71, 4.48, 4.48, 4.42,	3.097 4.186 3.505 3.435 10.19	4.10₄ 5.73₅ 5.56₃ 3.01₅ 1.48₽	3.004 2.923 3.843 4.094 2.568	4.03 ₃ 3.98 ₃ 3.03 ₃ 2.98 ₄ 1.68 ₈	6.74 ₂ 2.38 ₂ 7.02 ₂ 2.78 ₄ 1.28 ₇	3.45 ₂ 3.35 ₂ 2.30 ₂ 3.18 ₃ 1.23 ₇	C3H6N6 C8H6O4 C6H3NO2·HCl NaHSO4 Al2Si2O3(OH)4·2H2O/Halloysite-10A		24–1654 37–1919 29–1827 25–833 9–451	1.10
i •	3.40, 3.33 _x 3.37,	4.38 _x 4.30 ₅ 4.28	2.887 2.825 1.84	5.76₄ 6.08₂	2.61 ₄ 4.72 ₂ 2.47	4.094 1.71	2.764	1.76 ₃ 2.15 ₁ 2.14	V_2O_3 /Shcherbinaite, syn (NH ₄) ₂ Ca ₂ (SO ₄) ₃ AIPO (Berlinte, syn	- Al	9- 387 22-1037 10- 423	1.60 2.30
•	3.34 _x	4.26 ₂	1.82,	1.54 ₁	2.46 ₁	2.28	1.37	1.38,	SiO ₂ /Quartz, low, syn		33-1161	3.60
8 19 19 19 19 19 19 19 19 19 19 19 19 19	2.86 _x 3.32 _x 2.85 ₅ 3.89 _x 3.41 ₅	4.22, 4.22, 3.05, 8.87, 8.87,	Inte	ense	lines	6.22, 49, 52, 52, 94, 3.05,	2.87, 2.65, 2.83, 1.99, 2.74,	3.25, 2.41, 1.92, 2.41, 2.41, 2.37,	Candidate	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PDF-2	1/1 _c
8 8 8 8 8	8.91 n 8.96, 8.96 x 8.96 x 8.96 x	8.1770 8.882 8.805 8.457 8.457	4.32, 7.63, 3.04, 6.82, 6.52,	3.247 6.165 3.545 2.596 2.596	3.27, 3.34, 4.05, 3.02, 3.02,	2.59, 3.14, 3.15, 1.28, 3.28,	8-47 s 3-77 s 5-556 2-56 s 3-56 s	2, 59, 3,97, 2,48, 2,61, 2,61,	KARLO, Contendense C. M.C.D., C., M., Massilia, ayn (Frifigh, S., O., C., Massilia, ayn Barli, St. O., Colstan, ayn Barli, St., O., Colstan, ayn	* ** **	\$1— \$55 28—2032 36— \$7 38—1459 38—1459	
. 0 . 0	8.80 <u>x</u> 8.98 <u>x</u> 8.88 <u>x</u> 8.89 <u>x</u> 8.89 <u>x</u>	9.47, 9.46, 9.45, 8.45, 8.41,	8.66, 8.79, 8.44, 2.21, 2.31,	4.87, 3.26, 2.29, 3.39, 2.84,	2.06, 3.01, 4.30, 2.34, 2.84, 3.82,	3.03, 2.33, 2.42, 2.49, 2.14,	2.05, 2.91, 2.75, 1.32, 2.05,	2.865 2.775 3.075 2.125 2.095	K, Gr.O., Accounts, aya (K, Baytik, Aly, O./Ordeochera, Isarkan 1903, Watematam anstagekargisasio Al ₄ Sh ₂ O ₂₄ /Medikto, aya Natif ^a , Farroyasha, aya	• • •	27- 389 19- 3 35- 519 15- 776 11- 571	• \$4.633 •
· · · ·	8.41, 2.95, 3.99, 3.99, 3.90,	2.897 3.395 3.395 3.395	2.91, 2.93, 2.93, 4.74, 2.97,	2.84, 3.11, 3.11, 3.83,	1.82, 2.29, 3.73, 3.73, 2.34,	2. 14 3.57 2.92 2.94	2.03, 2.41, 2.41, 2.41, 2.98, 2.35,	2.05, 2.374 2.384 2.385 2.385	NoST/Farressia, nya Gé _r s, Gers, Gers, Geso,		11— 671 20—1036 20—1035 37—1919 14— 332	•

The Powder Diffraction File (PDF)

Information on known substances are collected into the PDF

PDF-2

lattice info

PDF-4

lattice info atomic positions relational database

PDF-4 organics

PDF-4 minerals

database browser

The Powder Diffraction File (PDF)

Information on known substances are collected into the PDF

6- 2 JCPDS-ICDD Copyright (c) 2000 Radiation: Quality: i			(14/10	10)
	l d A	Int.	hkl	
Ca Mg (Si,Al) O (OH) !6H O 0.3 3 4 10 2 2 Magnesium Aluminum Silicate Hydroxide Hydrate	 18.8 9.1	 100 50	0 0 0 0	1 2
 Saponite-18A, glycerol 	6.06 4.55 3.61	10 50 50	0 0 1 0 0 0	3 0 5
Rad: CuKa Lambda: 1.5418 Filter: Ni d-sp: Cutoff: Int: Visual I/Icor: Ref: Midgley, Mineral. Mag., 29 526 (1951) 	 3.01 2.61 2.48	1 1 1 40 1 1 60 1 1 30 1	0 0 1 1	6 1
Sys: Hexagonal S.G.: P a: 5.291(7) b: c: 18.05(5) A: C: 3.4115	2.26 2.00 1.736		0 0 0 0 0	8 9 0
Ref: Bayliss, P., Howie, R., Zussman, J., Powder Diffraction, 4 19 (1989) Dx: 2.10 Dm: 2.24 SS/FOM: F(13)=1.5(0.113,76)	1.536 1.321 1.271	1 70 1 1 40 1 1 20 1	3 0 2 2 3 1	0 0 0
ea: nwB: 1.555 ey: Sign: - 2V: O deg. Ref: Deer, W., Howie, R., Zussman, J., Rock Forming Minerals, 3 226 (1962)				
Color: White, reddish white Specimen from Lizard, Cornwall, England, UK. CAS no.: 12173-47-6. Glycerol treated. Smectite group, trioctahedral subgroup. PSC: hP39.30. Volume[CD]: 437.61.				

Boolean search

Line position matched against database entries of known substances

Automatic search match

Modern software does boolean search automatically on multiple peaks. Example of search match done by using the MDI Jade 5.0 software on an unknown specimen (mixture of AI_2O_3 , CaF_2 and ZnO)

The pattern of a mixture is the WEIGHTED sum of the patterns corresponding to the constituent phases.

Qualitative analysis via **SEARCH-MATCH**

Must we stick to qualitative results only???

NOT ALWAYS! Several techniques based on XRD exists for a quantitative determination of the phase content:

- QPA with internal standard
- QPA "standardless" (RIRs, Reference Intensity Ratios)
- QPA via Rietveld method

Mass absorption coefficient for a mixture if *n* phases:

$$\left(\boldsymbol{m}/\boldsymbol{r}\right)_{m} = w_{1}\left(\boldsymbol{m}/\boldsymbol{r}\right)_{1} + w_{2}\left(\boldsymbol{m}/\boldsymbol{r}\right)_{2} + \ldots + w_{n}\left(\boldsymbol{m}/\boldsymbol{r}\right)_{n} = \sum_{i=1}^{n} w_{i}\left(\boldsymbol{m}/\boldsymbol{r}\right)_{i}$$

Intensity for the *i*-th reflection in a single-phase pattern

$$I_i = k_i \frac{\left|F_i\right|^2}{m_i} LP = \frac{k'_i}{m_i}$$

Intensity for the *i*-th reflection and *j*-th phase in a multi-phase pattern

$$I_{i,j} = \frac{k'_{i,j}v_j}{\left(\mathbf{m}/\mathbf{r}\right)_m \mathbf{r}_m} = \frac{k'_{i,j}v_j}{\mathbf{m}_m}$$
 volume fraction j-th phases
in the phase of t

We can conveniently introduce the weight fractions

$$\boldsymbol{r}_{j} = \frac{w_{j}}{v_{j}} \boldsymbol{r}_{m} \qquad I_{i,j} = \frac{k_{i,j}' v_{j}}{\boldsymbol{m}_{m}} = \frac{k_{i,j}' w_{j}}{\boldsymbol{r}_{j} (\boldsymbol{m}/\boldsymbol{r})_{m}} = \frac{k_{i,j}'' w_{j}}{(\boldsymbol{m}/\boldsymbol{r})_{m}}$$
mass absorption coefficient for the mixture

For two phases, the formula for the i-th reflection reduces to:

$$I_{i,1} = \frac{k_{i,1}'' w_1}{(\mathbf{m}/\mathbf{r})_m} = \frac{k_{i,1}'' w_1}{\left[(\mathbf{m}/\mathbf{r})_1 - (\mathbf{m}/\mathbf{r})_2\right] w_1 + (\mathbf{m}/\mathbf{r})_2}$$

$$w_1 = 1 - w_2, v_1 = 1 - v_2$$

The mass absorption coefficient is however unknown!

What is therefore all of this useful for?

Internal standard

We can solve the problem by adding a known amount of a standard material.

Assuming that the amount of phase to be determined is w_j , we can add a known amount of an extra phase (spiking) w_s

By effect of the extra phase, we have:

$$w'_j = (1 - w_s) w_j$$

and, therefore the ratio of the intensities of two peaks for the *j* and *s* phases read:

$$\frac{I'_{i,j}}{I_{l,s}} = \frac{k_{i,j}w'_{j}}{k_{l,s}w_{s}} = f_{j,s}\frac{w'_{j}}{w_{s}} = f_{j,s}\frac{w_{j}(1-w_{s})}{w_{s}}$$

from which, if we know the structure of the phases and therefore $f_{i,s}$:

$$w_{j} = \frac{I_{i,j}}{I_{r,s}} \cdot \frac{w_{s}}{f_{j,s} (1 - w_{s})}$$

RI R formula

There is a possible elegant alternative.

For a 1:1 mixture of our phase and a corundum standard the *f* reads:

$$f_{j,s} = \frac{I_{i,j}}{I_{l,c}} \cdot \frac{w_c}{w_j (1 - w_c)} = 2 \frac{I_{i,j}}{I_{l,c}}$$

The ratio between the most intense peaks of our phase and of corundum is defined as Reference Intensity Ratio (RIR) with corundum:

$$RIR_{j,corundum} = I_j / I_c = \frac{I_{i,j}}{I_{l,c}} \frac{I_{l,c}^{rel}}{I_{i,j}^{rel}} \frac{W_c}{W_j}$$

For a peak *i* and phase *j* with relative intensity $I_{i,j}^{rel}$ we have:

$$w_{j} = \frac{I_{i,j} / I_{i,j}^{rel}}{I_{j} / I_{c}} \left[\sum_{k=1}^{n} \frac{I_{l,k} / I_{l,k}^{rel}}{I_{k} / I_{c}} \right]^{-1}$$

The Rietveld method

Definition: page 2 R.A. Young 1993:

In the Rietveld method the least-squares refinements are carried out until the best fit is obtained between the entire observed powder diffraction pattern taken as a whole and the entire calculated pattern based on the simultaneously refined models for the crystal structure(s), diffraction optics effects, intrumental factors, and other specimen characteristics

It is a minimization procedure (Nonlinear Least Squares refinement) of the residual:

Rietveld method: basic equation

Intensity of the i-th point in the pattern

Using the normalization condition:

 $\sum_{k} x_{k} = 1$

it is possible to calculate the weight fraction x_{α} of the phase a in a polyphasic mixture:

$$x_j = \frac{S_j \boldsymbol{r}_j \boldsymbol{v}_j}{\sum_l S_l \boldsymbol{r}_l \boldsymbol{v}_l}$$

Is the fit good?

$$R_{\rm F} = \frac{\sum |(I_{\rm K}({}^{\circ}{\rm obs'}))^{1/2} - (I_{\rm K}({\rm calc})^{1/2})|}{\sum (I_{\rm K}({}^{\circ}{\rm obs'}))^{1/2}} \qquad ({}^{\circ}R{}^{-}{\rm structure factor'})$$

$$R_{\rm B} = \frac{\sum |I_{\rm K}({}^{\circ}{\rm obs'}) - I_{\rm K}({\rm calc})|}{\sum I_{\rm K}({}^{\circ}{\rm obs'})} \qquad ({}^{\circ}R{}^{-}{\rm Bragg factor'})$$

$$R_{\rm p} = \frac{\sum |y_i({\rm obs}) - y_i({\rm calc})|}{\sum y_i({\rm obs})} \qquad ({}^{\circ}R{}^{-}{\rm pattern'})$$

$$R_{\rm wp} = \left\{ \frac{\sum w_i(y_i({\rm obs}) - y_i({\rm calc}))^2}{\sum w_i(y_i({\rm obs}))^2} \right\}^{1/2} \qquad ({}^{\circ}R{}^{-}{\rm weighted pattern'})$$

Statistical indices

Here I_K is the intensity assigned to the Kth Bragg reflection at the end of the refinement cycles. In the expressions for R_F and R_B the 'obs' (for observed) is put in quotation marks because the Bragg intensity, I_K , is rarely observed directly; instead the I_K values are obtained from programmatic allocation of the total observed intensity in a 'scramble' of overlapped reflections to the individual reflections, according to the ratios of those reflection intensities in the calculated pattern.

The 'Goodness-of-fit' indicator, S, is

$$S = [S_y/(N - P)]^{1/2} = R_{wp}/R_e$$

where

$$R_{\rm e} = (R - {\rm expected}) = [(N - P) / \sum w_i y_{\rm oi}^2]^{1/2}.$$

The Durbin-Watson statistic, 'd', is

where

$$d' = \sum_{i=2}^{N} \left(\Delta y_i - \Delta y_{i-1} \right)^2 \bigg/ \sum_{i=1}^{N} \Delta y_i^2$$

$$\Delta y_i = y_{\rm oi} - y_{\rm ci}.$$

Example of Rietveld-based QPA

QPA of zirconia polymorphs in Partially-Stabilised Zirconia TBCs (Thermal Barrier Coatings)

Example: GSAS

The same elements are always present to allow visual feeling for the fit quality

Structure solution/refinement

Structure solution/refinement

Structure solution of heptamethylene-1,7-bis(diphenylphosphane oxide)

Structural formula Ph₂P(O)(CH₂)₇P(O)Ph₂

Atom	x/a	y/b	z/c
C(1)	0.224(2)	0.940(2)	0.6306(5)
C(2)	0.299(3)	0.989(4)	0.6830(6)
C(3)	0.290(3)	0.953(4)	0.7404(5)
C(4)	0.209(3)	0.862(4)	0.7457(7)
C(5)	0.137(3)	0.809(4)	0.694(1)
C(6)	0.146(3)	0.845(3)	0.6361(7)
C(7)	0.205(1)	1.173(1)	0.558(1)
C(8)	0.097(1)	1.223(1)	0.549(2)
C(9)	0.080(2)	1.356(2)	0.557(2)
C(10)	0.171(2)	1.442(1)	0.573(3)
C(11)	0.277(2)	1.394(1)	0.577(2)
C(12)	0.294(1)	1.261(1)	0.570(2)
P(1)	0.227(1)	0.998(1)	0.5565(6)
O(1)	0.144(2)	0.932(2)	0.5067(6)
C(13)	0.366(2)	0.977(1)	0.553(1)
C(14)	0.413(2)	0.844(2)	0.573(1)
C(15)	0.486(2)	0.790(2)	0.536(1)
C(16)	0.509(3)	0.645(2)	0.5459(7)
C(17)	0.562(5)	0.610(2)	0.611(1)
C(18)	0.568(5)	0.464(2)	0.623(1)
C(19)	0.612(3)	0.418(1)	0.687(1)
P(2)	0.628(1)	0.245(1)	0.6950(5)
O(2)	0.542(1)	0.170(2)	0.6507(7)
C(20)	0.766(1)	0.209(3)	0.6889(7)
C(21)	0.782(2)	0.164(4)	0.634(1)
C(22)	0.889(2)	0.147(5)	0.628(1)
C(23)	0.980(1)	0.168(5)	0.677(1)
C(24)	0.965(1)	0.208(5)	0.733(1)
C(25)	0.858(1)	0.226(5)	0.739(1)
C(26)	0.631(2)	0.207(1)	0.7726(6)
C(27)	0.663(4)	0.303(2)	0.8179(6)
C(28)	0.668(4)	0.273(2)	0.8782(6)
C(29)	0.635(4)	0.149(2)	0.8929(7)
C(30)	0.597(4)	0.055(2)	0.847(1)
C(31)	0.596(5)	0.084(2)	0.787(1)

Structural solution

Direct methods

- Pattern decomposition and extraction of integrated intensities
- Trying to reconstruct the missing information (phase) directly from the pattern
- "Two steps" method:
 - Pattern decomposition and extraction of integrated intensities
 - Determination of the structure by matching measured and calculated intensities

• Rietveld method:

 Matching between the whole experimental pattern and the pattern built on the basis of a trial structure. Refinement of the structure by least square fitting

Structure solution/refinement

Commercial and free (shareware) software for structure solution and refinement

Structural parameters

- Cell symmetry (S.G.)
- Lattice parameters
- Atomic coordinates
- Bond angles and distances
- Site occupancy
- Thermal factors

Rietveld method can be used:

parameters of a synthetic pattern are refined against measured data

Amorphous materials

Radial distribution function

The long-range order typical of crystalline structures is absent in amorphous materials. However, a certain degree of short-range order is always present.

Diffraction can be used to measure the **radial distribution function**, i.e., the probability distribution to find an atom at a distance between r and r+dr taken from a reference atom.

Amorphous SiO₂

Amorphous content

Amorphous content

In a diffraction pattern both the amorphous halo and the crystalline peaks can be simultaneously present above the background (50% crystalline polymeric material).

Fourier Power Spectrum of two samples with different percentage crystallinity showing the amorphous and crystalline frequency bands.
Corundum + amorphous silica

amorphous bands typical of a glassy phase

Amorphous phases: QPA and crystallinity

Modeling of amorphous and crystalline peaks allows obtaining the **fraction of amorphous phase** in mixtures.

Diffraction can also measure the **degree of crystallinity** in partly-crystalline materials, like polymers or glassceramics.

Fig. 1. Rietveld analysis of sample C (Y₂O₃/amorphous silica with weight ratio 10:90) with air scattering subtracted. In the inset, which shows an enlargement, the experimental noise of the amorphous scattering used in the fitting is evident. At the bottom, the weighted residuals are reported. Because of the noise in the amorphous pattern, the normalized residuals are defined as ΔY_i (weighted) = $(Y_{oi} - Y_{ci})/[Y_{oi} + (K^{am})^2 Y^{am}]^{1/2}$ and consequently the goodness of fit is $S^2 = \{\sum [\Delta Y_i (\text{weighted})]^2\}/(N-P) = 1.3$.

P. Riello, P. Canton, G. Fagherazzi, J. Appl. Cryst. 1998, 31, 78-82.

Microstructural analysis

Line profile analysis

Profile information extracted as FWHM or I ntegral Breadth (β)

Line profile analysis

Traditional methods are based on the study of the integral breadth of X-ray peaks:

Line profile analysis

It is possible to correlate the integral breadth with the size *L* of the coherently diffracting domains (Scherrer formula):

The constant K_β is related to the shape of the domains and is of the order of magnitude of 1

Line profile analysis: traditional methods

Considering multiple peaks, a trend can be found

Alternative advanced methods: WPPM

Alternative exists where the whole X-ray diffraction pattern is analysed in terms of physical models of the microstructure

Alternative advanced methods: WPPM

Instrumental Profile, Domain Size, Dislocations, Anti-Phase Domain terms are real functions of L (Fourier length), whereas Faulting, Grain Surface Relaxation and fluctuations in the composition give complex (A+iB) contributions

Additional line broadening sources can be included by adding (multiplying) corresponding FTs

WPPM application: nanocrystalline ceria

WPPM application: nanocrystalline ceria

Nanocrystalline cerium oxide from sol-gel route

WPPM application: nanocrystalline ceria

Nanocrystalline cerium oxide from sol-gel route

Residual stress analysis

Residual stresses

Why residual stresses?

1st African X-ray school Dakar - December 12-17, 2005

Residual stress

Load – stress - strain

In most cases we cannot measure stress directly (unless we are in simple cases where a known force is applied to a known surface area). How we can solve the problem?

Residual stress analysis

Crystalline domains can be used as strain gauges

grain deformation

lattice deformation

The deformation is measured along different directions, by tilting the sample. The in-plane strain is obtained by measuring *d* along off-plane directions.

Measurement principle

We need therefore additional movements for the specimen, with respect to the traditional Bragg-Brentano setup

XRSA diffractometer

Residual stress analysis

If the stress field is plane and rotationally symmetric:

$$\sigma_{11} = \sigma_{22} = \sigma_{11}, \ \sigma_{12} = \sigma_{13} = \sigma_{23} = \sigma_{33} = 0$$

and if no gradient and no texture are present, then:

Coated piston head

Texture analysis

Crystallographic texture

A 'true' powder has randomly oriented crystalline domains. The diffracted intensity does not depend on the probing direction.

Crystallographic texture

If crystalline orientation is not random, the diffracted signal depends on the incident angle.

1st African X-ray school Dakar - December 12-17, 2005

Stereographic projection: old cartography

The information can be reported on suitable maps: pole figures. The stereographic projection is adopted

Laboratory instrument: PANalytical X'Pert MRD

Synchrotron instrument: SRS station 2.3

Eulerian cradle for stress/texture measurement

Crystallographic texture: pole figures

Crystallographic texture: pole figures

In general, texture can be quite complex. Several pole figures, for different (hkl), may be required to understand the orientation

High temperature studies

Laboratory equipment

(a)

High temperature diffractometer setup

Laboratory instrument with strip heater

Temperature calibration

Possible studies

Unusual thermal expansion data

Transformation of quartz

Transformation of quartz

Thermal expansion of α and β quartz

High temperature illite decomposition

Synchrotron case: specimen heating setup

Measurement setup

Example: transformation of FeOOH

Temperature increase Image Plate translation goethite hematite proto-hematite hematite RT

Data after readout

Thin film analysis

Growing a film: lattice mismatch

Types of thin films

Pseudomorphic epitaxial layers. "No" defects. Strain may be presentExample :AlGaAs/GaAs, SiGe/SiApplications:Lasers, High-frequency IC's

Lattice mismatched epitaxial layers. Layers are partly (or fully) relaxed

Example:ZnSe/GaAs, InAsSb/GaSbApplications:Blue LED's, IR optopelectronic

Layers with large lattice mismatch and/or dissimilar crystal structuresExample:GaN/Sapphire, YBaCuO/SrTiO3, BST, PZTApplications:Blue Lasers and LED's, High Tc Superconductors,
Ferro electrics

Layers where the epitaxial relationship is weak. Highly textured

Example: Applications: AuCo multilayers on Si Thin film media, heads

XRD for thin films and layers

Reflectivity Measurements

- Thickness, Density, Surface Roughness
- Lateral and Depth Correlation
- Curvature

In-plane Scattering

- Nano-layers
- Nano-structures
- In-plane properties

High Resolution Diffraction

- Orientation
- Quality of Epitaxy, Lattice Mismatch
- Phase Composition
- Thickness, Density, Surface Roughness
- Residual macrostress
- Microstructure

Typical Setup for Reflectivity Measurements

Information from a Reflectivity Curve

Reflectivity

XRD Study of Self-Assembled Monolayers $C_{18}H_{37}SH$ on Gold

Specular Reflectivity Curve

Reflectivity Map, Diffuse Scattering

Determined thickness of the layers:

$C_{18}H_{37}SH$	- 1.6nm
Au1	- 0.6nm
Au2	- 19.0nm
Si	> 100000nm

Determined Average Lateral Correlation Length: 2.5nm

High resolution setup

The highly parallel monochromatic beam should be used to study perfect layers

Detector 2

X-Ray rocking curves

X-ray Rocking curves

Analysis of SiGe HBT Structure

The introduction of a SiGe epitaxial layer in the bipolar transistor (HBT) brings significant gains in speed, challenging GaAs in its traditional application fields. New technological step of introducing Ge requires also an accurate method for the characterization of Ge content and gradients.

Automatic simulation and refinement of a measured rocking curve helps to identify parameters of individual layers. Method delivers 1 % accuracy for composition and 3 % accuracy for SiGe thickness.

Grazing Incidence XRD (GI XRD)

GIXRD of a magnetic film

Reciprocal space mapping

Relaxed GalnAs/GaAs (224)

