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Extended x-ray-absorption fine-structure(EXAFS) of copper has been measured from 4 to 500 K and
analyzed by the cumulant method, to check the effectiveness of EXAFS as a probe of local dynamics and
thermal expansion. The comparison between parallel mean square relative displacements(MSRD) of the first
four coordination shells has allowed detecting a significant deviation from a pure Debye behavior. The first-
shell EXAFS thermal expansion is larger than the crystallographic one: the difference has allowed evaluating
the perpendicular MSRD, whose Debye temperature is slightly larger than the one of the parallel MSRD, due
to anisotropy effects. High-order first-shell cumulants are in good agreement with quantum perturbative mod-
els. The anharmonic contribution to the first-shell parallel MSRD amounts to less than 1.5 percent. The third
cumulant cannot be neglected in the analysis, if accurate values of the first cumulant are sought; it cannot
however be used to directly estimate the thermal expansion. The shape of the effective pair potential is
independent of temperature; a rigid shift, partially due to the relative motion perpendicular to the bond
direction, is however observed.
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I. INTRODUCTION

Since the 1970s, extended x-ray-absorption fine structure
(EXAFS) is considered a powerful probe of the local struc-
ture in various kinds of disordered systems.1 A great theoret-
ical effort has been made in the last years to calculate
EXAFS spectra taking into account multiple scattering and
curved wave effects.2 A reliable and effective treatment of
thermal and structural disorder still represents however an
open problem, whose solution is expected to increase the
amount and accuracy of information obtainable from
EXAFS.

Thermal disorderhas been frequently treated within the
harmonic approximation, leading to a Gaussian distribution
of interatomic distances, whose variances2 corresponds to
the mean square relative displacement(MSRD) kDui

2l paral-
lel to the bond between absorber and back-scatterer atoms.3,4

The EXAFS Debye-Waller factor exps−2s2k2d is often con-
sidered as a mere fitting parameter; only occasionally it has
been exploited to gain information on the correlated motion
of neighboring atoms.5

Anharmonicity effects on EXAFS have been detected
quite early.6 After the first pioneering studies on AgI(Ref. 7)
and CuBr,8 it has been shown that anharmonicity cannot be
neglected even in systems like germanium9 or GaAs.10 Par-
ticularly effective, for treating anharmonicity in moderately
disordered systems, is the cumulant expansion method,11–14

which facilitates the experimental data analysis8,15,16as well
as their theoretical interpretation.17–21The EXAFS cumulants
parametrize the asymmetric distribution of interatomic dis-
tances, and can be connected to the force constants of a
one-dimensional effective pair potential.22,23 In particular,

the first three cumulants measure the average value, the vari-
ance, and the asymmetry of the distribution, respectively.

EXAFS can be exploited to study the thermal expansion
of selected interatomic distances. Both the first and third cu-
mulants have often been considered equally sensitive to ther-
mal expansion.24 This equivalence, which is valid for a one-
dimensional system, where the average distance is solely
modified by the asymmetry of the interaction potential, was
not confirmed by accurate EXAFS measurements of nearest-
neighbors distances in several simple crystals.6,25,26Actually,
the first EXAFS cumulant is larger than the distance between
the centers of the probability distribution functions, owing to
the effect of atomic vibrations perpendicular to the bond
direction,27,28 and its temperature dependence is stronger
than the thermal expansion measured by Bragg diffraction or
by macroscopic techniques. The difference between EXAFS
and crystallographic thermal expansion can be exploited to
gain original information on the MSRDkDu'

2 l perpendicular
to the bond direction.26 As far as the third cumulant is con-
cerned, contradictory results were obtained for different crys-
tals; the thermal expansion solely due to the asymmetry of
the distribution, evaluated from the third cumulant, is smaller
than the first-cumulant thermal expansion but equal to the
crystallographic thermal expansion in the first coordination
shell of germanium;26 in AgI, CuBr, and CdSe, on the con-
trary, it is larger than the first-cumulant thermal expansion
and non-negligbly different from the crystallographic ther-
mal expansion.25,29,30A recent study of Ag2O has demon-
strated that accurate EXAFS measurements can give unique
information on the local behavior of systems affected by
negative thermal expansion.31

These results open new perspectives for EXAFS studies
of the local dynamics in crystalline and noncrystalline mate-
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rials. On the other hand, they pose also relevant questions
about the very meaning of EXAFS cumulants in relation to
physical properties of three-dimensional systems, the ulti-
mate accuracy which can affect their determination, and the
reliability and limitations of the one-dimensional model. The
cumulant approach has been criticized on different
grounds.32,33A reliable assessment of its strengths and limi-
tations can only be based on careful experimental studies of
systems of known structure and dynamical properties.

In this paper, we present an EXAFS study of Copper, in
the temperature interval from 4–500 K. Copper has often
been used as reference system for calibrating the procedures
of EXAFS data analysis and the interpretation of
results.2,34–37Main aim of the present study is to understand
the extent and accuracy of information concerning thermal
expansion and local dynamics obtainable from EXAFS.
Some preliminary results for the first shell have been pre-
sented elsewhere, in a rapid communication dedicated to
path-integral Monte Carlo calculations.38

Section II contains a synthetic and up-to-date introduction
to the cumulant method, enlightening the most recent devel-
opments and emphasizing the differences between one-
dimensional model and three-dimensional crystals. In Sec.
III some experimental details are given on temperature de-
pendent EXAFS measurements on copper. In Sec. IV the
data analysis procedures are depicted. In Sec. V the results of
EXAFS analysis are presented. Sections VI and VII are dedi-
cated to a discussion of results and to conclusions, respec-
tively.

II. THEORY

The effects of thermal disorder on the EXAFS signal of
one given scattering path can be calculated from the canoni-
cal average of the oscillatory function:39

Ke2ikre−2r/lskd

r2 L =
Trhe−bĤe2ikre−2r/lskd/r2j

Trhe−bĤj
, s1d

wherer is the instantaneous half-path-length(corresponding
to the interatomic distance for single-scattering paths), k is
the photoelectron wave number,lskd is the photoelectron

mean free path, andĤ is the system Hamiltonian.
For moderate disorder, the logarithm of the canonical av-

erage can be expanded as a power series ofk,

Ke2ikre−2r/lskd

r2 L = expFo
n=0

`

s2ikdnCnY n ! G . s2d

The parametersCn are thecumulantsof an effective distri-
bution Psr ,ld=rsrd exps−2r /ld / r2, where rsrd is the real
distributionof interatomic distances. Phase and amplitude of
the EXAFS signal of a selected path can be parametrized in
terms of odd and even cumulants, respectively.

The relations between cumulants of thereal andeffective
distributions,Cn

p and Cn, respectively, as well as the effects
of neglecting thek dependence ofl, have been discussed in
Refs. 11 and 14. The first cumulants(average values) are
connected through the relation

C1 = C1
p −

2C2
p

C1
p S1 +

C1
p

l
D , s3d

which is customarily used. For higher order cumulants, the
difference is less important,14 and is generally neglected for
moderate disorder.

A. One-dimensional model

The interpretation of EXAFS cumulants is simple for a
one-dimensional system(like a two-atomic molecule, if ro-
tational motion is neglected). The one-dimensional inter-
atomic potential is conveniently expanded as a power series
of the instantaneous displacementx=r −r0 with respect to the
minimum positionr0,

Vsxd = k0x
2/2 + k3x

3 + k4x
4 + ¯ , s4d

where k0 and k3,k4, . . . are theharmonic and higher order
(anharmonic) force constants, respectively. The thermal ex-
pansionkxl=kr −r0l is due to the asymmetry of the potential.

A quantitative relation between EXAFS cumulants and
force constants, based on a perturbative quantum approach,40

has been proposed by Frenkel and Rehr17 and extended by
Yokoyama.23 Let us recall here some relevant results. Con-
sidering the harmonic term of the potential as unperturbed
Hamiltonian, and defining

v = Îk0/m, s0
2 = "/2mv, z= e−b"v s5d

(m is the reduced mass) one can find the following first order
expressions. The temperature dependence of the first cumu-
lant dC1

p=kxl is

dC1
p . −

3k3s0
2

k0

1 + z

1 − z
. s6d

The second cumulant in harmonic approximation is

C2 . s0
21 + z

1 − z
; s7d

higher order anharmonic terms are also given in Ref. 23
[where, in the second term of Eq.(12), a factor 120 should
be substituted for 24].41 The third cumulant is

C3
p . −

2k3s0
4

k0

z2 + 10z+ 1

s1 − zd2 . s8d

The thermal expansion

kxl . dC1
p . −

3k3

k0
C2

p s9d

can be equivalently obtained from the temperature depen-
dence of the first cumulant or of the second and third cumu-
lants. In the classical approximation24

dC1
p = C3

p/2C2
p, s10d

which is equivalent to Eq.(9) only in the high-temperature
limit.

An experimental EXAFS study of the anharmonic inter-
atomic potential in the Br2 molecule has been recently done
by Yokoyamaet al.42
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B. Crystals

In crystals, an EXAFS spectrum still samples a one-
dimensional distribution of distances for each scattering
path, but now the potential is defined within a
3N-dimensional configurational space,N being the number
of atoms. The interpretation of EXAFS cumulants thus re-
quires a specific treatment.

Let us define a distanceR0, between a pair of absorber
and back-scatterer atoms, corresponding to an ideal classical
state of absolute rest. When thermal disorder is switched on
(including zero point motion), the instantaneous relative ther-
mal displacement of absorber and back-scatterer atoms,DuW
=uW j −uW0, can be decomposed into its projectionsDui andDu'

along the average bond direction and in the perpendicular
plane, respectively. The instantaneous interatomic distance
is, to first approximation,13

r . R0 + Dui + Du'
2 /2R0. s11d

Within the framework of a quasiharmonic approach, the par-
allel relative displacement of Eq.(11) can be decomposed
into a harmonic and an anharmonic contribution,

Dui = sDuidh + sDuidan. s12d

Let us now consider canonical averages. The three-
dimensional distribution of relative distances being an ellip-
soid in the harmonic approximation,kDuilh=0, and the first
EXAFS cumulantC1

p=krl is

C1
p . R0 + kDuilan+ kDu'

2 l/2R0, s13d

while the crystallographic distanceRc between the centroids
of the probability distribution functions, measured by Bragg
diffraction, is

Rc = R0 + kDuilan. s14d

Both kDuilan andkDu'
2 l have finite values at zero kelvin, due

to the zero point motion.
The average distance measured by EXAFS is larger than

the crystallographic distance,

C1
p . Rc + kDu'

2 l/2R0. s15d

Since kDu'
2 l depends on temperature, also the thermal ex-

pansiondC1
p measured by EXAFS is larger than the crystal-

lographic thermal expansiondRc. This effect is of geometri-
cal origin, and would be present also for a perfectly
harmonic crystal.14

The second cumulant isC2
p=ksr −krld2l. Expanding Eq.

(11), one can show that in the harmonic approximation

C2
p . kDui

2l −
kDui

2Du'
2 l

R0
2 +

fkDu'
4 l − kDu'

2 l2g
4R0

2 , s16d

where the first term on the right-hand side is the parallel
MSRD, and the third term is the variance of the distribution
of Du'

2 . It is customary to truncate Eq.(16) at the first lead-
ing term,

C2
p . kDui

2l, s17d

and to fit its temperature dependence to phenomenological
models(correlated Debye and Einstein models). The parallel
MSRD can in turn be decomposed3 into the sum of the un-
correlated mean square displacements(MSD) of absorber
and back-scatterer atoms and of the displacement correlation
function (DCF).

The third cumulantC3
p=ksr −krld3l measures the asymme-

try of the distribution of distances, which is mainly due to
the anharmonicity of the crystal potential.14

The interpretation of EXAFS cumulants for crystals is
often carried on with reference to a one-dimensionaleffective
potential, which is expanded as in Eq.(4). The effective pair
potential depends however on the statistically averaged be-
havior of all the atoms in the crystal, and is in principle
temperature dependent, both in position and shape. One can
show that the temperature dependence ofkDu'

2 l corresponds
to a positive shift of the minimum of the effective pair
potential.14 The EXAFS thermal expansiondC1

p thus depends
not only on the asymmetry of the effective potential, like for
the one-dimensional case, but also on its rigid shift, which
originates from thermal vibrations perpendicular to the bond
direction and possibly from other causes.25,29,30Accordingly,
Eq. (6) and (9) are not valid for many-dimensional systems.
The quantitiesdC1

p and a=−3k3C2
p /k0 are not equivalent in

crystals. To the extent that the shape of the effective potential
is independent of temperature, Eqs.(7) and (8) are instead
still valid. Equation(7) corresponds to the Einstein corre-
lated model, and the Einstein frequency allows measuring an
effectivebond-stretching force constantk0.

When considering multiple scattering(MS) paths, one fre-
quently indicates byr the total path length, so that first and
second cumulants are expressed as

C1
p = krl/2, C2

p = ksr − krld2l/4. s18d

Generalizing Eq.(13) gives

krl . R0 + o
i=1

n

kDuilan
i,i+ + o

i=1

n
kDu'

2 li,i+

2R0
i,i+ , s19d

whereR0 is now the total frozen path length, the sums are
over the path lengths, andi+ is a short-hand notation fori
+1 (but n+ =1). Similarly, generalizing Eq.(17) gives2

ksr − krld2l . KUo
i=1

n

suW i+−uW id · R̂0
i,i+U2L . s20d

III. EXPERIMENT

The available experimental EXAFS data on copper
mainly date back to early pioneering experiments, and are
anyway limited to a few temperatures.34–37 In order to deal
with high-quality spectra, reasonably distributed within a
large temperature interval, new measurements have been
made with synchrotron radiation at the BM08(Gilda) beam-
line of ESRF(European Synchrotron Radiation Facility) in
Grenoble(France). Electron energy and average current were
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6 GeV and 190 mA, respectively. The sample was a copper
foil of 99.97% purity, 5mm thickness, light tested and an-
nealed at 973 K(purchased from Goodfellow Ltd.).

The x-ray beam was monochromatized by two parallel
silicon crystals with flat reflecting(311) faces, detuned to
reduce the harmonics influence. The beam intensity was
measured before and past the sample by two argon-filled
ionization chambers. The sample temperature was varied
from 4 to 500 K, at intervals varying from 5 K at low tem-
peratures to 50 K at high temperatures. At and below 300 K,
a liquid helium cryostat was utilized, where the sample was
immersed in a He gas athmosphere; at and above 300 K, the
sample was maintained in thermal contact with the cold fin-
ger of a liquid nitrogen cryostat. In both cases, a preset tem-
perature was maintained by means of an electric heater con-
trolled by a feedback loop. The temperature, directly
measured on the sample holder, was stabilized to an accuracy
not worse than 0.5 K. The acquisition time was 5 s/point.
Two or three spectra were measured at some selected tem-
peratures, to allow an evaluation of experimental uncertainty.
The value of the absorption jump at the Cu K edge wasmx
.1.2, and did not vary by more than 2 percent during the
entire experiment.

IV. DATA ANALYSIS

At the beginning of the analysis, the edges of all spectra
were aligned to within 0.1 eV or better. The EXAFS signal
was obtained asxskd=fmskd−m1skdg /m0skd, where mskd is
the experimental absorption coefficient,m1skd is a spline
polynomial best fitting the average behavior ofmskd, and
m0skd is a smooth Victoreen-type function(~l2.8, wherel is
here the photon wavelength) with absolute values normalized
to the absorption jump of each spectrum. The EXAFS oscil-
lations at selected temperatures are shown in Fig. 1.

The corresponding Fourier transforms are shown in Fig.
2. The first-shell peak, centered at about 2.3 Å, is well iso-
lated at all temperatures. It was then possible to single out
the first-shell contribution by Fourier back-transform. The
structure between about 3 and 5.3 Å formed by three peaks
which are well separated at 4 K but progressively merge

when temperature increases, is due to the superposition of
single scattering(SS) contributions from second, third, and
fourth shells as well as of rather important MS
contributions.2 Two different procedures were then utilized
to obtain quantitative information.

The first procedurewas utilized only for the first coordi-
nation shell, whose contribution could be neatly isolated, and
where MS effects were absent. It consisted in the separate
analysis of phase and amplitude of the filtered EXAFS signal
through theratio method,11,14 taking the lowest temperature
spectra as reference for backscattering amplitudes, phase
shifts, and inelastic terms. In Fig. 3, phase differences and
logarithms of amplitude ratios for the first coordination shell
of copper are plotted againstk2 for selected temperatures.
The subscripts 1 and 2 indicate the reference(4 K) and the
actual temperature, respectively. In the plot ofsF2−F1d /2k
(Fig. 3, upper panel), the vertical intercept isdC1 while the
linear slope is proportional to the third cumulant variation
dC3. In the plot of lnsA2/A1d (Fig. 3, lower panel) the linear
slope is proportional to the variation of the second cumulant
dC2. The ratio method, when applicable, allows a visual es-
timate of the overall quality of experimental data and of the
usefulk range, which typically decreases when temperature
increases. The error on interatomic distances deriving from
neglecting the third cumulant is evident, and the deviation
from linear behavior indicates the possible relevance of
higher order cumulants. Actually, since the cumulant series
of Eq. (2) was truncated at the fourth-order term, the results
of the analysis were the relative values of four polynomial

coefficientsdC̃n=C̃nsTd−C̃ns4Kd. The good correspondence

FIG. 1. Normalized EXAFS oscillationsk2xskd at theK edge of
copper, measured at 4, 250, and 500 K.

FIG. 2. Fourier transforms of the EXAFS signal of copper at 4,
250, and 500 K. Continuous and dotted lines are the modulus and
the imaginary part, respectively. The transforms have been made in
the intervalk=2–20 Å−1, with a k3 weighting and a 10% Gaussian
window for all three spectra.
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of the polynomial coefficients with the cumulantsCn of the
effectivedistribution of distancesPsr ,ld was a posteriori
checked by the regular temperature dependence of their val-
ues(see below).14,26

In the second procedure, EXAFS spectra were simulated
at different temperatures by the FEFF8 code,43 and the cu-
mulant values were obtained through a nonlinear best-fit to

experimental spectra(the FEFFIT code44 was utilized to this
purpose). In principle this procedure(in the following re-
ferred to astheoretical) should give absolute values of cu-
mulants; actually, significant absolute values with an accu-
racy sufficient for the aims of this work were obtained only
for the second cumulant; relative values were then consid-
ered for the other cumulants. For the first-shell analysis, the
theoretical procedure was used to check the results of the
ratio method. For the outer shells, it represented the only
reasonable way for taking into account both SS and MS con-
tributions between 3 and 5.3 Å in the Fourier transformed
spectrum of Fig. 2. A particular care was devoted to reducing
as much as possible the number of free parameters. Let us
here considerE0, the edge energy mismatch between theory
and experiment, andS0

2, the amplitude reduction factor taking
into account intrinsic inelastic effects.2 The values ofE0 and
S0

2, left free in a first trial analysis, varied as a function of
temperature(typically, E0.2.8–4 eV,S0

2.0.84–0.88 for the
first shell). Average values were then calculated(E0
=3.19 eV,S0

2=0.86 for the first shell) and maintained fixed
in a further analysis, leading to a substantial reduction of the
uncertainty bars and of the scattering of cumulant values as a
function of temperature.

V. RESULTS

A. First coordination shell

The relative values of the first three cumulants of the first
coordination shell, obtained by theratio method, are listed in
Table I. The uncertainties, expressed as standard deviations

FIG. 3. First shell of copper, examples of analysis by the ratio
method at selected temperatures. Upper panel, phase differences.
Lower panel, logarithms of amplitude ratios.

TABLE I. Temperature dependence of the EXAFS cumulants of the first coordination shell of copper,
obtained by theratio method. C1 is the first cumulant of the effective distribution.C1

* is the first cumulant of
the real distribution, calculated for a constant mean free pathl=9 Å.

T sKd
dC1

s10−3 Åd
dC1

*

s10−3 Åd
dC2

*

s10−3 Å2d
dC3

*

s10−4 Å3d

10 0.0±0.4 0.0±0.4 0.00±0.01 0.00±0.03

15 0.1±0.3 0.1±0.3 0.02±0.01 0.00±0.03

20 0.0±0.3 0.0±0.3 0.01±0.01 0.00±0.03

25 0.0±0.3 0.0±0.3 0.00±0.01 0.01±0.03

40 0.0±0.3 0.0±0.3 0.03±0.01 0.01±0.03

55 0.1±0.3 0.3±0.3 0.18±0.01 0.02±0.03

70 −0.1±0.3 0.3±0.3 0.33±0.01 0.00±0.04

85 0.2±0.3 0.7±0.3 0.49±0.01 0.01±0.04

100 0.4±0.3 1.1±0.3 0.73±0.01 0.05±0.03

125 1.0±0.4 2.2±0.4 1.19±0.01 0.14±0.05

150 1.4±0.3 3.1±0.3 1.66±0.01 0.23±0.04

200 2.8±0.4 5.5±0.4 2.77±0.02 0.52±0.05

250 4.1±0.3 8.2±0.3 4.04±0.03 0.92±0.04

300 5.5±0.9 10.9±0.9 5.34±0.03 1.41±0.07

350 7.1±1.4 13.8±1.4 6.60±0.06 2.03±0.13

400 8.9±1.8 16.9±1.8 7.94±0.09 2.76±0.16

450 10.6±1.2 20.0±1.2 9.40±0.16 3.76±0.10

500 12.9±1.0 23.7±1.0 10.77±0.06 4.86±0.09
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of the means, were evaluated by reasonably varying the pa-
rameters of the analysis procedure(Fourier transform win-
dow, and fitting intervals for differences of phases and am-
plitudes ratios) as well as cross comparing the results from
different files measured at the same temperature. The refine-
ment of the analysis allowed increasing the accuracy of cu-
mulant values with respect to the preliminary presentation of
Ref. 38.

The difference between cumulantsCi andCi
* of the effec-

tive and real distributions, respectively, was significant only
for the first cumulant,14 to which Eq. (3) was applied. For
higher order cumulants, after having checked the negligibil-
ity of the difference, we setCn

* =Cn.

1. Second cumulant

It is convenient to begin the presentation of results from
the second cumulant(Fig. 4). The ratio method (open
circles) gives only relative valuesdC2

* . Absolute values, cor-
responding to the parallel MSRD, were estimated by fitting
Einstein and Debye correlated models5 to the experimental
dC2

* data. The Einstein frequency wass4.96±0.05d THz, cor-
responding to a second order effective force constantk0
=3.20 eV/Å2. The Debye temperature wass328±3d K. The
Einstein model gave absolute values 1.2310−4 Å2 higher
than the Debye model.

AbsoluteC2
* values have been directly obtained from the

theoretical analysis procedure. Their temperature dependence
is consistent with an Einstein frequency of 4.96 THz; the
values are however slightly lower than expected according to
the Einstein model(from 3 to 7310−4 Å2 when going from
4 to 500 K).

2. First cumulant

Let us now consider the first cumulant(Fig. 5). The ratio
methoddirectly gives the relative valuesdC1 for theeffective
distribution(open circles). The analysis procedure, based on
the difference between total phases, cancels to a good ap-
proximation thek-dependent photoelectron mean free path

lskd.11,14 Relative valuesdC1
* for the real distribution were

sought through Eq.(3), making use of the experimentaldC2
*

values. Thek dependence ofl, in principle not negligible,
cannot be analytically taken into account in this procedure.
We thus calculateddC1

* for three constant values ofl (6, 9,
and 12 Å, respectively), and considered the spread ofdC1

*

values as a reasonable measure of the uncertainty due to
neglecting thek dependence.

Within this uncertainty, a good agreement is found with
the relativedC1

* values determined by the theoretical analy-
sis. It should be noted that the theoretical procedure calcu-
lates thek dependence oflskd from the imaginary part of the
interaction potential, and uses a simplified form of Eq.(3),
lacking theC1

* /l term.
As expected(Sec. II), the thermal expansiondC1

* mea-
sured by EXAFS is larger than the crystallographic thermal
expansiondR (continuous line in Fig. 5, calculated from Ref.
45), owing to the effect of the perpendicular MSRD. By
inverting Eq. (15), relative values ofC'=kDu'

2 l were ob-
tained,

dC' = 2RsdC1
* − dRd. s21d

Absolute values ofkDu'
2 l were evaluated by fitting thedC'

values to specifically tailored Debye or Einstein models,
whose analytical expressions were found to correspond to
the models for the parallel MSRD multiplied by a factor of 2
(this is intuitively understandable sinceDu' is a projection
into a plane instead of along a direction). The perpendicular
MSRD values so obtained are shown in Fig. 6. No significant
difference was found between the Debye and Einstein mod-
els. The correspondence between experimental points and
theoretical models is not as good as for the parallel MSRD,
particularly at high temperature. Besides reflecting the influ-
ence of larger uncertainty bars, this could also be due to
stronger anharmonicity effects. The Debye temperatures cor-
responding to different values of the mean free pathl are

FIG. 4. First shell of copper, second cumulant, relative values
from the ratio method(open circles, larger than uncertainty bars)
and absolute values obtained through correlated Einstein and Debye
models(down and up triangles, respectively). The dotted and con-
tinuous lines are the best fitting Einstein and Debye models, respec-
tively. The squares are the absolute values obtained by a best fit to
FEFF simulations.

FIG. 5. First shell of copper, temperature variation of the first
cumulant of the effective distribution(open circles) and of the real
distribution (down triangles, full circles and up triangles for mean
free path 6, 9, and 12 Å, respectively), obtained by theratio
method. The squares are the values obtained by a best fit to FEFF
simulations. The continuous line is the crystallographic thermal ex-
pansion. The uncertainty bars are shown only for the open circles
and the squares.
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shown in Table II. The spread of values can be considered a
rough measure of their uncertainty. They are anyway larger
than the corresponding values for the parallel MSRD, the
gap decreasing whenl increases.

3. Third and fourth cumulants

Let us now consider the third cumulant(Fig. 7, upper
panel), carrying on its interpretation within the framework of
the one-dimensional model. The relative valuesdC3

* obtained
by both the ratio method and the theoretical analysis were in
good agreement. Absolute values ofC3

* were obtained by
fitting the temperature dependence of the valuesdC3

* to Eq.
(8). Using the second order force constantk0=3.20 eV/Å2

from the second cumulant analysis, the best fit was found for
a third order force constantk3=−1.37 eV/Å3. The zero
kelvin value wasC3.1310−5 Å3.

The thermal expansion solely due to the asymmetry of the
effective potential is, according to Eq.(9), a=−3k3C2

* /k0.
17

Its relative valuesda, based on the present EXAFS results,
are shown in Fig. 7(lower panel). As generally expected in
crystals,da is different fromdC1

* (Fig. 5). Besides,dasTd is
different also fromdRsTd, indicating that the crystallographic
thermal expansion is not reproduced by the anharmonicity of
the effective EXAFS potential. The behavior previously
found for germanium,da.dR,26 must then be considered as
a peculiar coincidence, and cannot be generalized.

At last, let us consider the fourth cumulant(Fig. 8). The
temperature dependence of the experimentaldC4

* values was
fitted to the quantum analytical expression of Ref. 23[where,

in the first term of Eq.(15), the factors"vd2 in the denomi-
nator should be replaced by"v].41 The agreement is reason-
ably good. By imposing the values of second and third order
force constantsk0 andk3 previously obtained, the best fit was
found for a fourth order force constantk4=1.46 eV/Å4. The
zero kelvin value wasC4.4310−7 Å4.

The knowledge of the third- and fourth-order force con-
stants allowed estimating the anharmonic contribution to the
second cumulant, using the high order corrections to Eq.(7)
given in Ref. 23. The best fit was obtained by a tiny increase
of the Einstein frequency(from 4.96 to 4.99 THz). The an-
harmonic correction resulted positive and very small(less
than 1.5%).

B. Outer coordination shells

The analysis of the second, third, and fourth coordination
shells was globally performed by the theoretical procedure,
including all MS paths with relative importance larger than
2.5 percent with respect to the first-shell signal, and fitting
the simulated spectra to the experimental ones in ther-space

FIG. 6. Perpendicular MSRD for the first shell of copper, evalu-
ated for a photoelectron mean free path of 9 Å(full circles). The
long-dashed, continuous and short-dashed lines are the best fitting
Debye models for photoelectron mean free paths of 6, 9, and 12 Å,
respectively. The squares and the dotted line are the parallel MSRD
and the best fitting Debye model, respectively.

TABLE II. Einstein frequenciesn1 and Debye temperaturesu1

best fitting the temperature dependence of the parallel and perpen-
dicular MSRDs of the first shell of copper.

MSRD' MSRDi

l=6 Å l=9 Å l=12 Å

n1 sTHzd 4.19 4.57 4.81 4.96

u1 sKd 275 301 316 328

FIG. 7. Third cumulant(upper panel), absolute experimental
values from ratio method(circles) and from theoretical procedure
(squares); the continuous line is the best fitting theoretical model.
Thermal expansion due to the asymmetry of the effective potential
(lower panel, full circles; the continuous line is the crystallographic
thermal expansion).

FIG. 8. Fourth cumulant, absolute experimental values(circles)
and best fitting theoretical model(continuous line).
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between 2.9 and 5.25 Å. After a large number of trials, a
reasonable agreement between theory and experiment(Fig.
9) could be obtained only by a drastic reduction of the fitting
parameters, according to the following prescriptions:(a) the
relative thermal expansion of all SS and MS paths was de-
scribed by a unique fitting coefficienta; (b) the second cu-
mulants of the three SS paths were considered as free param-
eters;(c) the second cumulants of the linear MS paths were
linked to the second cumulants of SS paths by geometrical
considerations, while the second cumulants of nonlinear MS
paths were constrained to a Debye model withuD=315 K
(average specific heat Debye temperature); (d) third and
fourth cumulants were neglected for all paths.

The second cumulants(parallel MSRDs) of the SS paths
are shown in Fig. 10. The comparison with the MSD mea-
sured by diffraction of Mössbauer gamma rays47,48 allows
evaluating the effect of correlation on the different coordina-
tion shells. The Debye temperatures were evaluated by fitting
the Debye correlated model to experimental data in two dif-
ferent ranges, from 4 to 300 K and from 4 to 500 K, respec-
tively, in order to check the effects of anharmonicity. First,
third, and fourth shells share a very similar Debye tempera-
ture, independent of the fitting range(Table III); the second
shell has instead a significantly lower Debye temperature,

whose dependence on the fitting range suggests a stronger
sensitivity to anharmonicity. The MSRD values obtained
from EXAFS are consistent, at high temperatures, with the
ones recently calculated by means of molecular dynamics
simulations.46

The average relative thermal expansion obtained through
the best-fit procedure is compared in Fig. 11 with the crys-
tallographic one. The good agreement should not be overem-
phasized; the thermal expansion calculated through molecu-
lar dynamics simulations46 is larger than the crystallographic
one also for the outer shells. The difference can be attributed
to perpendicular thermal vibrations, although the effect is
weaker than for the first shell. The present EXAFS analysis
is insensitive to this difference probably as a consequence of
neglecting the third cumulant. All attempts aiming at increas-
ing the information quality and quantity from EXAFS were
unsuccessful. In particular, the inclusion of the third cumu-
lant in the signal of at least one of the coordination shells led
to a prohibitively large correlation between first and third
cumulant, which spoiled the results of any reasonable mean-
ing.

VI. DISCUSSION

Three different logical steps have been singled out in the
procedure of data analysis. In the first step, two three-
dimensional distributions of atomic positions are reduced to
the one-dimensionalreal distribution of interatomic dis-
tances, characterized by the cumulantsCn

* . This process, of
geometrical nature, depends on the vibrational properties of
the crystal. In the second step, the real distribution is
sampled by the photoelectron spherical wave, leading to an
effective distributionwith cumulantsCn. This process de-
pends on the EXAFS mechanism. The third step consists in

FIG. 9. Amplitude of Fourier transform of the experimental sig-
nals at 4, 250, and 500 K(continuous lines) and best fitting simu-
lated signals(dashed lines).

FIG. 10. Second EXAFS cumulant(parallel MSRD) of copper,
first (full circles), second(full squares), third (up triangles), and
fourth (down triangles) coordination shells. Open circles and
crossed squares correspond to twice the uncorrelated MSDs from
Refs. 47 and 48, respectively.

TABLE III. Debye temperatures(in K) of the parallel MSRDs
of the first four shells of copper, for two different fitting intervals.

Fitting
range

First
shell

Second
shell

Third
shell

Fourth
shell

4–300 K 328.5 291 322.5 322

4–500 K 328 283 322 321

FIG. 11. Average relative thermal expansion best fitting the
EXAFS signal corresponding to the second, third, and fourth coor-
dination shells(squares). The continuous line is the crystallographic
relative thermal expansion.
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the extraction of a limited number of polynomial coefficients

C̃n from EXAFS spectra.
The regular temperature dependence of the polynomial

coefficientsC̃n, in agreement with theoretical expectations
(Figs. 4, 5, 7, and 8), supports the hypothesis of a fast con-
vergence of the cumulants series, and authorizes considering
the polynomial coefficients as good estimates of the cumu-
lants Cn. This self-consistent procedure is particularly suit-
able for evaluating the soundness of phenomenological
analyses.15 A further support to the fast convergence has
been given by the reproduction of the first-shell EXAFS cu-
mulants by path-integral Monte Carlo calculations.38

The distinction between real and effective distributions
allows separating effects which depend on different physical
causes, and can facilitate the comparison of EXAFS results
with the results from other techniques.

A. Thermal expansion

Relevant information on thermal expansion(as well as on
third and fourth cumulants) was obtained only for the first
coordination shell.

Bragg diffraction measures the variation of the distance
between the average atomic positions, which corresponds,
for relatively simple crystals, to the thermal expansion mea-
sured by macroscopic dilatometry techniques. EXAFS mea-
sures the variation of the average value of the interatomic
distance. The difference can be detected, at least in concen-
trated samples, by good quality transmission measurements
(Fig. 5), and cannot be neglected in acurate works. Its origin
is connected with the different sensitivity to local correlation
of atomic motion. In this respect, thermal diffuse scattering
(TDS) in Bragg diffraction spectra and x-ray or neutron scat-
tering from noncrystalline materials contain in principle the
same kind of information. EXAFS is however recommended
for the relative easiness of temperature dependent measure-
ments and accuracy attainable in data analysis.

The connection between first cumulants of the effective
and real distributions[Eq. (3)] requires the knowledge of the
parallel MSRD, which can be directly obtained from
EXAFS. The connection between the distances measured by
EXAFS and diffraction[Eq. (15)] requires the knowledge of
the perpendicular MSRD, which cannot be evaluated solely
from EXAFS. Actually, the relation between the parallel and
perpendicular MSRD depends on the peculiar dynamical
properties of a given crystal. As a matter of fact, in copper
dC1 is smaller and dC1

* is larger than dR, while in
germanium26 both dC1 anddC1

* are larger thandR. The dis-
tance between the centroids of the probability distribution
functions, as measured by Bragg diffraction, cannot be di-
rectly obtained from EXAFS, nor from other techniques
similarly sensitive to local correlation.

The difference in thermal expansion values measured by
EXAFS and Bragg diffraction can be positively exploited
when investigating on the local origin of some anomalous
dynamical behaviors, like negative thermal expansion
(NTE). In many systems, NTE has been explained in terms
of geometrical effects induced by low-frequency vibrational
modes. In simple crystals with the diamond or zinc-blende

structure(like germanium or GaAs), NTE is attributed to
transverse acoustic modes which induce a guitar string
effect.49 In framework structures, composed of networks of
corner-sharing tetrahedral and/or octahedral structural units,
NTE has been attributed to the effect of rigid unit modes
(RUM).50 The sensitivity of EXAFS to the real thermal ex-
pansion of selected interatomic bonds and to the correlation
of relative motion perpendicular to the bond represents a
powerful tool for studying the local behavior of NTE mate-
rials and checking the soundness of theoretical models.31 In
this respect, EXAFS can be more accurate and experimen-
tally simpler than the alternative approaches based on the
analysis of TDS in total scattering experiments.51

Once the absolute values of the perpendicular MSRD
have been evaluated, from the difference of EXAFS and dif-
fraction thermal expansions and the fit to Debye or Einstein
models, it is possible to recover the difference between the
EXAFS and diffraction absolute distances,C1

* and Rc, re-
spectively. In the case of copper, taking into account the
considered spread of mean free path values, the difference
has been evaluated ass1.4±0.1d310−3 Å at 4 K and
s3.9±0.4d310−3 Å at 300 K. Larger differences can be
found in systems characterized by larger values of the per-
pendicular MSRD.

B. Mean square relative displacements

Both parallel and perpendicular MSRD carry original and
independent information on the phase relationships between
eigenvectors of the dynamical matrix. Their knowledge can
be exploited to check the soundness ofab initio calculations
as well as of dynamical models of different degrees of ap-
proximation.

The Debye temperatures best fitting the parallel MSRD of
the first four coordination shells(Table III) can be compared
with the Debye temperatures of specific heat(uD=345 and
310 K atT=0 and 298 K, respectively) and of x-ray diffrac-
tion (uM =307 and 327 K from the Bragg peaks intensities
and from TDS, respectively),52 as well as of more recent
Mössbauer diffraction measurements(312 K).48 Slight differ-
ences are expected between Debye temperatures measured
by different techniques and in different conditions, in view of
the different weightings of the density of vibrational states.
In a perfect Debye crystal, the MSRDs of all coordination
shells should be described by the same Debye temperature;
the significantly lower value found for the second shell of
copper indicates a weaker correlation effect for the next-
nearest-neighbors distance, and suggests that also in close
packed cubic crystals a slight vibrational anisotropy is
present. Recently, a reduced correlation along thek100l di-
rection was found in several fcc crystals by both dynamical
calculations and pair distribution function measurements.53

The Debye temperature of the first-shell perpendicular
MSRD is slightly lower than the one of the parallel MSRD
(Table II). On general grounds, the difference between par-
allel and perpendicular MSRD depends on the peculiar dy-
namical properties of the crystal, and can be summarized by
the temperature dependence of the ratiog=kDu'

2 l / kDui
2l. For

an ideal Debye crystal, both parallel and perpendicular
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MSRDs should be interpreted by the same Debye tempera-
ture, and the ratiog should be 2. The experimental value of
g for the first shell of copper depends on the choice of the
mean free pathl (Fig. 12). It is in any case reasonable to
assume thatg for the first shell of copper is larger than 2 and
smaller than 3, indicating a slight parallel-perpendicular an-
isotropy. This experimental result is consistent with the high-
temperature valueg=2.7 recently obtained by PIMC Monte
Carlo calculations.38 A much higher value,g=6, was experi-
mentally found for the first shell of germanium,26 in agree-
ment with model calculations for silicon54 and satisfactorily
reproduced byab initio calculations.55 The difference be-
tween copper and germanium can be attributed to the pecu-
liar effect of optical modes in non-Bravais crystals.

Equations (15) and (17), connecting first and second
cumulant to perpendicular and parallel MSRDs, respectively,
are approximated. It has been shown in Ref. 14, through
harmonic numerical simulations, that the approximation is
very good for perfect parallel-perpendicular isotropy, and
slightly worsens when the ratiog and the degree of thermal
disorder increases. For the first shell of copper, then, in view
of the reduced anharmonicity and anisotropysg,3d, the
high order corrections to Eqs.(15) and (17) can be consid-
ered negligible.

C. Effective potential

The good correspondence between temperature depen-
dence of second, third, and fourth cumulants and their ana-
lytical expressions derived from the one-dimensional
model23 suggests that the shape of the effective EXAFS po-
tential for the first shell of copper is insensitive to tempera-
ture within the experimental uncertainty.

The thermal expansion measured by the first EXAFS cu-
mulant,dC1

* (Fig. 5), is amenable to the sum of two contri-
butions: the asymmetry of the effective potential, measured
by the third cumulant(Fig. 7), and a rigid shift of the effec-
tive potential curve. It was shown in Ref. 14 that the har-
monic thermal vibrations perpendicular to the bond direc-
tion, which are responsible for the differencedC1

* −dRc
between EXAFS and crystallographic thermal expansions,
are connected to a rigid positive shift of the effective poten-
tial, but do not produce appreciable asymmetry of the dis-

tance distribution. In the case of parallel-perpendicular isot-
ropy, g=2, the potential shift induced by perpendicular
vibrations directly corresponds to the differencedC1

* −dRc.
The further difference found betweendRc and da (Fig. 7)
suggests the presence of an additional positive potential shift,
which was not observed in the case of germanium.26 In other
systems, a negative shift of the effective potential was in-
stead observed.25,29,30

The relationship between anharmonicity of the crystal po-
tential and asymmetry of the effective pair potential is far
from trivial even for simple crystals like copper. As a conse-
quence, it has been shown that no direct information on ther-
mal expansion can be obtained from the third cumulant. In
spite of this drawback, the cumulant method and the refer-
ence to an effective pair potential still present several advan-
tages, which can be relevant when studying systems with a
moderate degree of disorder, for which the cumulant series is
fastly convergent(the limitations of the cumulant method for
highly disordered systems have been discussed in Ref. 33).
The cumulant analysis does not require to previously hypoth-
esize the analytical form of a model distribution of distances;
the distribution can instead bea posteriori reconstructed
from the cumulants(see Fig. 13). The possibility of evaluat-
ing the effects of anharmonicity in a parametric form,
through the values of the third and higher order cumulants,
allows a more effective and accurate comparison with theo-
retical results than would be possible by directly comparing
distributions. Besides, it is possible to subtract the effects of
effective potential anharmonicity from the second cumulant,
and evaluate the purely harmonic contribution to the parallel
MSRD, which can be easily compared with harmonic force
constant models.

The effective potential should not be confused with the
interaction potential, since it depends on the averaged behav-
ior of all the atoms in the crystal. Its use, eliminating the
canonical temperature dependence of the distribution of dis-
tances, allows emphasizing the residual temperature depen-
dence, which can be connected to more subtle physical ef-
fects. As a matter of fact, the negative shift experimentally
observed in AgI(Ref. 25) has stimulated the development of
a theoretical model which explains the shift in terms of the
high mobility of Ag cations.56

FIG. 12. Ratio kDu'
2 l / kDui

2l for l=9 Å (circles). The long
dashed, continuous and short-dashed lines are the ratios of the best
fitting Debye models forl=6,9,12 Å,respectively.

FIG. 13. Real distributions of first-shell interatomic distances
reconstructed from EXAFS cumulants at 4, 250, and 500 K(con-
tinuous, dashed and dotted lines, respectively). The dotted vertical
line evidences the positive shift of the maximum of the distribu-
tions, corresponding to the potential minimum, when temperature
increases.
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VII. CONCLUSIONS

In this work, an EXAFS study of copper in the tempera-
ture interval from 4 to 500 K has been presented. No signifi-
cant differences have been found between the relative values
of cumulants obtained through a purely phenomenological
analysis based on theratio method(when applicable, say for
the first coordination shell) and an analysis based on theoret-
ical simulations(FEFF code).

Accurate values of the parallel MSRD have been obtained
for the first four coordination shells. A slight but significant
deviation from a perfectly isotropic Debye behavior has been
detected, consisting in a weaker correlation and stronger an-
harmonicity effect for the second shell with respect to the
other ones, in agreement with refined dynamical calculations.
This result evidences the still unexplored potential of
EXAFS for the study of subtle dynamical effects.

An accurate evaluation of odd cumulants was possible
only for the first shell. The thermal expansion measured by
the first cumulant is larger than the crystallographic thermal
expansion. The difference has allowed an evaluation of the
perpendicular MSRD with a good accuracy. The Debye tem-
perature of the perpendicular MSRD is slightly larger than
the one of the parallel MSRD, indicating a weak
perpendicular-parallel anisotropy, in agreement with path-
integral Monte Carlo calculations. Third and fourth cumu-
lants have been satisfactorily fitted to equations derived from
perturbative quantum calculations. The so obtained third and
fourth order force constants of the effective pair potential
allowed us to evaluate the anharmonic correction to the par-
allel MSRD, which amounts to less than 1.5 percent. The
thermal expansion calculated from the third cumulant, due
solely to the asymmetry of the effective pair potential, is
non-negligibly smaller than the crystallographic one. The

third cumulant cannot be neglected in the data analysis, if
accurate values of the first cumulant are sought, but cannot
be directly used to estimate the thermal expansion.

The regular temperature dependence of experimental cu-
mulants, the agreement with quantum perturbative models
and the overall consistency of results demonstrate the effec-
tiveness of the cumulant expansion approach for the study of
moderately disordered systems.

The good reproduction of the second and higher order
cumulants within the framework of the one-dimensional
model indicates that the shape of the effective pair potential
is independent of temperature. The differences between the
thermal expansions measured by the first and third cumulant
as well as the crystallographic thermal expansion have been
interpreted in terms of a rigid positive shift of the effective
potential, which is only partially due to the relative motion
perpendicular to the bond direction.

The results presented in this paper should contribute to a
deeper understanding of the meaning of EXAFS parameters,
and stimulate further efforts to increase the accuracy of
EXAFS experiments and data analyses. Besides, they point
to the still little explored possibilities of obtaining original
information on local dynamical properties of solids. The cali-
bration of these possibilities on simple crystalline systems
like copper open new perspectives for studies of crystals
with negative thermal expansion and of noncrystalline sys-
tems.
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