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Thermal effects on EXAFS are considered from a general perspective. The equivalence between canonical
average and real space average is demonstrated without approximations in both classical and quantum regimes.
The link between distribuiton of interatomic distances and the Hamiltonian of the system is clarified. The role
of the one-dimensional effective potential is critically discussed.
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I. INTRODUCTION

Since the 1970s, thermal effects on EXAFS have been
described, in the single scattering case, by an average over a
one-dimensional distribution ��r�:1

�
0

�

��r�
e−2r/��k�

r2 e2ikrdr . �1�

This “real space” interpretation led to a relatively simple
parametrization, which facilitated the analysis and contrib-
uted to a widespread use of EXAFS. The distribution ��r�
has often been approximated by a Gaussian one, whose vari-
ance �2 corresponds to the parallel mean square relative
displacement2 ��u�

2�. Anharmonicity effects were again pa-
rametrized, for moderately disordered systems, within the
framework of the cumulant method.3 The actual sensitivity
of EXAFS to an effective distribution P�r ,�� was then em-
phasized and the corrections due to the factors e−2r/��k� and
1/r2 were estimated.4 More recently, the difference between
EXAFS and crystallographic distance was recognized.5 This
discrepancy, of geometrical origin,6 can be used to obtain the
mean square relative displacement perpendicular to inter-
atomic bonds7 ��u�

2 �. An up to date account on the physical
interpretation of EXAFS cumulants can be found in Ref. 8.

A more general approach to thermal disorder in EXAFS
can be based on ensemble averages. For example, Beni and
Platzman2 and later Poiarkova and Rehr9 started from the
relation

�e2ikr� =
Tr�e−�He2ikr�

Tr�e−�H�
= e2ikRce−2k2��u�

2�. �2�

However, several assumptions are implicit in Eq. �2�:
�i� only the main factor e2ikr is considered, neglecting the

influence of the terms e−2r/��k� and 1/r2;
�ii� the EXAFS distance �r�= ��r2−r1�� is considered

equivalent to the crystallographic distance Rc= ��r2−r1��, ne-
glecting the effect of perpendicular vibrations7,8 ��u�

2 � and
possibly of higher order terms;

�iii� third and higher order cumulants are not included;
�iv� the Hamiltonian of the system is considered in har-

monic approximation. Such approximations become evi-
dently inappropriate when accurate experimental results are
to be obtained8 and the support of a safe underlying theory is
required.

Third and fourth order cumulants have been calculated in
the framework of an ensemble average10 through a three-
dimensional quantum perturbative approach, still maintain-
ing however the approximations �i� and �ii�.

The equivalence of the two approaches �real space and
canonical average� is often considered as trivial but, to our
knowledge, it has never been demonstrated on general
grounds, including the low-temperature quantum regime.
Fujikawa and Miyanaga10 investigated the relation between
real space and canonical approach, in harmonic approxima-
tion and considering only central force interactions. They
concluded that the equivalence could not be guaranteed at
low temperatures.

In this paper, we demonstrate the formal equivalence of
the two approaches, real space and ensemble averages, and
find the link between the distribution ��r� and the Hamil-
tonian H �or, classically, the potential energy V� of the sys-
tem, on the grounds of rather general formal arguments. We
will start from the general expression3

� e−2r/��k�

r2 e2ikr	 , �3�

still neglecting the weak dependence of the scattering factor
on the instantaneous configuration r �Ref. 11�. We will define
this thermal average as a canonical average, restricting our-
selves to the case of a single coordination shell, i.e., to a
single scattering path.

The paper is organized as follows. In Sec. II the simple
one-dimensional case of a two-atomic system will be consid-
ered both in classical and quantum regimes. In Sec. III the
same procedure will be generalized to the three-dimensional
case of a many-atomic system. The concept of effective po-
tential will be critically discussed in Sec. IV. Section V will
be dedicated to discussion and conclusions.

II. ONE-DIMENSIONAL TWO-ATOMIC SYSTEM

As a one-dimensional system, we consider a two-atomic
molecule, without rotational motion and vibrating only along
the bond direction. The motion of the center of mass can be
easily separated from the relative motion, both in the classi-
cal and quantum cases.12 Since the pair potential energy V
depends only on the relative distance r, the system is char-
acterized by two conjugate variables: the position r and the
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momentum p, which in the quantum case become the opera-
tors r̂ and p̂.

A. Classic treatment

For the sake of simplicity, we define the function

f�r� =
e−2r/��k�e2ikr

r2 , �4�

so that the calculations will be made for a generic f�r�.
The average over a canonical ensemble is defined by

�f�r�� =
1

Z
� f�r�e−�V�r�dr , �5�

where Z is the partition function

Z =� e−�V�r�dr

and V�r� is the potential energy of the system. Since the
probability density of finding the system in the position r is
given by

��r� = Z−1e−�V�r�, �6�

one obviously obtains

�f�r�� =� f�r���r�dr . �7�

By means of Eqs. �3� and �4� one arrives at Eq. �1�.

B. Quantum treatment

The canonical average of f�r̂� is given by

�f�r̂�� =
1

Z
Tr
f�r̂�e−�H�r̂,p̂�� �8�

where Z is the partition function

Z = Tr�e−�H�r̂,p̂��

and H= p̂2 / �2��+V�r̂� is the Hamiltonian operator.
Let us now consider atomic thermal vibrations of ampli-

tude significantly smaller than the average interatomic dis-
tance �r�. This seems not to be a restrictive hypothesis, since
strongly anharmonic systems can be treated in classical ap-
proximation. Anyway, the domain of f�r� �or, equivalently, of
its real and imaginary parts� can be considered safely distant
from zero. Now, f�r̂� is a function of the operator r̂ and—in
the appropriate domain discussed above—it can be formally
defined as a power expansion of r̂ �Ref. 12�:

f�r̂� = �
j

f jr̂
j . �9�

This step is a fundamental one in the demonstration, since it
expresses a complicated, oscillatory damped function f�r̂�

see Eq. �4�� in terms of simple powers of r̂. Indicating the
eigenstates and eigenvalues of the operator r̂ by �r� and r,
respectively, it follows from Eq. �9� that

f�r̂��r� = f�r��r� . �10�

Making use of Eq. �10�, we can now evaluate the trace of Eq.
�8� in the coordinate representation:

�f�r̂�� =
1

Z
� �r�e−�H�r̂,p̂��r�f�r�dr . �11�

Since the probability density of obtaining the eigenvalue r of
position is given by

��r� = Z−1�r�e−�H�r̂,p̂��r� , �12�

one again obtains Eq. �7� and the thesis is proved.

III. THREE-DIMENSIONAL MANY-ATOMIC SYSTEM

The three-dimensional system is characterized by N non-
collinear atoms. The Hamiltonian is a function of 6N vari-
ables, i.e., atomic positions r1 ,r2 ,… ,rN and their conjugate
momenta p1 ,p2 ,… ,pN. In the quantum case, one deals with
the position and momentum vectorial operators r̂i, p̂i �i
=1,2 ,… ,N�.

Without loss of generality, we label by 1 and 2 the ab-
sorber and back-scatterer atoms, respectively. EXAFS
samples the modulus r of their instantaneous distance.

A. Classic treatment

The canonical average is defined by

�f�r�� =
1

Z
� f�r�e−�V�r1,r2,…,rN�dr1dr2 ¯ drN, �13�

where Z is the partition function

Z =� e−�V�r1,r2,…,rN�dr1dr2 ¯ drN

and V�r1 ,r2 ,… ,rN� is the potential energy of the system. A
change of variables permits us to separate the motion of the
center of mass from the relative motion of absorber and
back-scatterer atoms:

rCM =
m1r1 + m2r2

m1 + m2
, r = r2 − r1. �14�

Since the Jacobian of the transformation �14� is unitary, we
can rewrite Eq. �13� as

�f�r�� =
� f�r�g�r�dr

� g�r�dr

, �15�

where g�r� is the three-dimensional radial density function
given by

g�r� =� e−�V�r,rCM,r3,…,rN�drCMdr3 ¯ drN �16�

and normalized such that 
g�r�dr=N, where N is the coor-
dination number of the shell. If g�r� is divided by the �con-
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stant� numerical density of particles, one obtains the so-
called “pair distribution function.”

The integral in Eq. �15� can be simplified by changing
into spherical coordinates r, �, 	. We can define the angular
average of g�r� �Ref. 13� by

1

4

�

�

g�r�d� = �g�r��� = g�r� , �17�

where d�=sin � d� d	. In this way, Eq. �15� becomes:

�f�r�� =
� g�r�f�r�r2dr

� g�r�r2dr

. �18�

The one-dimensional, normalized distribution of instanta-
neous interatomic distances ��r� sampled by EXAFS can be
properly defined as13

��r� = �4
/N�r2�g�r���. �19�

The substitution of this equation in Eq. �18� gives again Eq.
�7� and the thesis is proved.

B. Quantum treatment

The canonical average is defined by

�f�r̂�� =
1

Z
Tr
f�r̂�e−�H�r̂1,r̂2,…,r̂N,p̂1,p̂2,…,p̂N�� , �20�

where Z is the partition function

Z = Tr
e−�H�r̂1,r̂2,…,r̂N,p̂1,p̂2,…,p̂N��

and H=�ip̂i
2 / �2mi�+V�r̂1 , r̂2 ,… , r̂N� is the Hamiltonian op-

erator. We can label by �ri� and ri the eigenstates and eigen-
values of the operator r̂i, respectively:

r̂i�ri� = ri�ri� for i = 1,2,…,N .

Since the operators r̂1 , r̂2 ,… , r̂N represent a complete set of
commuting observables �C.S.C.O.�, the product of their
eigenstates ��r1��r2�¯ �rN�� forms a complete basis of the
3N-dimensional Hilbert space. The classical change of vari-
ables, described by Eq. �14�, becomes in the quantum case a
change of operators and the new basis of the Hilbert space is
given by the eigenvectors of the new C.S.C.O.
��r��rCM��r3�¯ �rN��. This is the most suitable basis to evalu-
ate the trace of Eq. �20�:

�f�r̂�� =
1

Z
� �r,rCM,r3,…,rN�e−�Hf�r̂�

��r,rCM,r3,…,rN�drdrCMdr3 ¯ drN. �21�

The vectorial operator r̂, defined in terms of its scalar com-
ponent operators as �x̂ , ŷ , ẑ�, obeys the equation r̂�r�=r�r�.
The scalar operator r̂2 is defined by r̂2= r̂r̂= x̂2+ ŷ2+ ẑ2 and
obeys the equation r̂2�r�=r2�r�. The function f�r� in Eq. �4�
can also be regarded as a function f̃�r2�, where r=�r2. Since
the domain of f�r� is safely away from zero, remembering
Eq. �9� we can write

f�r̂��r� = f̃�r̂2��r� = f̃�r2��r� = f�r��r� . �22�

In Eq. �21�, the operator f�r̂� acts only on the ket �r� of the
basis. So it is possible to use Eq. �22� and write the canonical
average of f�r̂� as in Eq. �15�, where now the three-
dimensional radial density function is given by

g�r� =� �r,rCM,r3,…,rN�e−�H�r̂,r̂CM,r̂3,…,r̂N,p̂,p̂CM,p̂3,…,p̂N�

��r,rCM,r3,…,rN�drCMdr3 ¯ drN. �23�

From now on the demonstration proceeds in the same way as
in the three-dimensional classical case: one introduces the
EXAFS one-dimensional distribution ��r� as in Eq. �19� in
terms of the angular average �g�r���, which is in turn given
by Eq. �17�. In this way, one obtains again Eq. �7� and the
thesis is proved.

IV. EFFECTIVE POTENTIAL

The distribution of distances ��r� in many atomic systems
has frequently been related to a one-dimensional effective
potential Veff�r�.3,14,15 For analogy with the true one-
dimensional system one classically defines Veff�r�:

��r� = Z−1e−�Veff�r�. �24�

This equation can obviously be inverted to obtain Veff�r�
= �−1/��ln ��r�+const.

The quantum link between ��r� and Veff�r� is given by

��r� = Z−1�r�e−�Heff�r̂,p̂��r� , �25�

where Heff�r̂ , p̂�= p̂2 / �2��+Veff�r̂� is an effective Hamil-
tonian. Contrary to Eq. �24�, Eq. �25� cannot be inverted, so
Veff can be explicitly obtained from an EXAFS experiment
only at sufficiently high temperatures, when one is safely in
a classical regime.16 Nor it is obvious that the minimum of
the potential corresponds to the maximum of the distribution
in quantum regime.

It is well established that Veff�r� does not represent the
true local interaction potential between absorber and back-
scatterer atoms in the crystal. The introduction of an effec-
tive potential has then been justified on the grounds that its
shape seems to be insensitive to thermal changes.8 Anyway,
the position of Veff�r� shifts with temperature and its asym-
metry cannot reproduce the crystallographic thermal
expansion.8

It is important to point out now that the effective potential
Veff�r� is not involved in the calculations leading from the
three-dimensional canonical average to the average over the
distribution ��r� performed in Sec. III. Besides, the true ca-
nonical temperature dependence enters in ��r� through the
radial density function g�r�, which is defined in quantum
regime by Eq. �23�.

It seems thus that the soundness of using the effective
potential for many-atomic systems is based on phenomeno-
logical arguments, within the limits of experimental uncer-
tainty, rather than on a rigorous demonstration.
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V. DISCUSSION AND CONCLUSIONS

The equivalence between canonical average and real
space integral has been assumed valid by many authors and
questioned by others.10 The demonstration of the equivalence
presented in this work has been performed relaxing several
approximations previously used9 when approaching to ca-
nonical thermal averages in EXAFS. In particular, no explicit
form was assumed for the Hamiltonian H �and then this
treatment intrinsically accounts for anharmonicity� or the in-
teratomic distance r. Also, corrections due to the finite mean
free path and spherical wave nature of the EXAFS photo-
electron have been implicitly taken into account, since the
calculations were carried out for a generic function f�r�.

The validity of the real space thermal average is not lim-
ited to the classical approximation, but holds in the general
quantum case. The description of thermal effects in terms of
a distribution of distances is the most widely used since the
earliest works on EXAFS and the most useful for practical
purposes. Indeed, the distribution ��r� represents the actual
physical information embedded in EXAFS spectra and, if

parametrized in terms of its cumulants, it can be recon-
structed through suitable data analysis. Recent experimental
results have shown that it is possible to measure the quantum
effects on the third cumulant at very low temperatures,7,8 so
that in principle the distribution ��r� can never be considered
normal. While in the one-dimensional case the definition of
the distribution ��r� and its link with the Hamiltonian of the
system are quite immediate, the reduction of the three-
dimensional reality of a many-atomic system to an one-
dimensional distribution of distances requires a more careful
treatment, through the introduction of a radial distribution
function.

The present work, definitively assessing the equivalence
between canonical average and real space approach, puts on
firmer grounds the standard treatment of thermal disorder in
EXAFS. Further efforts should be done to generalize the
formal treatment to the case of multiple scattering paths, ei-
ther relying on a distribution of instantaneous half path
lengths11 or on configurational averages over a distribution
of generalized coordinates.17
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